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a b s t r a c t

Efficient characteristic set methods for computing zeros of
polynomial equation systems in a finite field are proposed. The
concept of proper triangular sets is introduced and an explicit
formula for the number of zeros of a proper and monic triangular
set is given. An improved zero decomposition algorithm is
proposed to reduce the zero set of an equation system to the
union of zero sets of monic proper triangular sets. The bitsize
complexity of this algorithm is shown to be O(ln) for Boolean
polynomials, where n is the number of variables and l ≥ 2
is the number of equations. We also give a multiplication free
characteristic set method for Boolean polynomials, where the sizes
of the polynomials occurred during the computation do not exceed
the sizes of the input polynomials and the bitsize complexity of
algorithm is O(nd) for input polynomials with n variables and
degree d. The algorithms are implemented in the case of Boolean
polynomials and extensive experiments show that they are quite
efficient for solving certain classes of Boolean equations raising
from stream ciphers.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Solving polynomial equations in finite fields plays a fundamental role in many important fields
such as coding theory, cryptology, and analysis of computer hardware. To find efficient algorithms to
solve such equations is a central issue both inmathematics and in computer science (see Problem 3 in
(Smale, 1998) and Section 8 of (Coron and deWeger, 2007)). Efficient algebraic algorithms for solving
equations in finite fields have been developed, such as the Gröbner basis methods (Bardet et al., 2003;
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Brickenstein and Dreyer, 2007; Faugère, 1999, 2002; Faugère and Ars, 2003; Kapur and Narendran,
1985; Gerdt and Zinin, 2008; Sato and Inoue, 2005) and the XL algorithm and its improved versions
(Courtois et al., 2000).

The characteristic set (CS) method is a tool for studying polynomial, algebraic differential, and
algebraic difference equation systems (Aubry et al., 1999; Boulier et al., 1995; Bouziane et al., 2001;
Chou, 1988; Chou and Gao, 1990; Dahan et al., 2005; Gallo and Mishra, 1991; Gao et al., 2009;
Hubert, 2000; Kalkbrener, 1993; Kapur and Wan, 1990; Lazard, 1991; Lin and Liu, 1993; Maza, 2000;
Möller, 1993; Szántó, 1999; Wang, 1993; Wu, 1986; Yang et al., 1996). The idea of the method is
reducing equation systems in general form to equation systems in the form of triangular sets. With
this method, solving an equation system can be reduced to solving univariate equations in cascaded
form. In the case of finite fields, univariate equations can be solved with Berlekamp’s algorithm
(Menezes et al., 1996). The CSmethod can also be used to compute the dimension, the degree, and the
order for an equation system, to solve the radical ideal membership problem, and to prove theorems
from elementary and differential geometries (Wu, 2001).

Inmost existingwork on CSmethods, the zeros of the equations are taken in an algebraically closed
field which is infinite. These methods can also be used to find zeros of the equations in finite fields.
But, they do not take into the account of the special properties of the finite fields and thus are not
efficient for solving equations in finite fields. In this paper, we propose efficient CS methods to solve
equations in the general finite field Fq with q elements. More precisely, we will develop efficient CS
algorithms for polynomial systems in the ring

Rq = Fq[x1, . . . , xn]/(H)

where H = {xq1 − x1, . . . , x
q
n − xn}. Due to the special property of Rq, the proposed CS methods are

more efficient and have better properties than the general CS method.
A triangular set may have no solutions in a finite field. For instance, x2 + 1 = 0 has no solution

in the finite field F3. To avoid this problem, we introduce the concept of proper triangular sets and
prove that proper triangular sets are square-free and always have solutions. We also give an explicit
formula for the number of solutions of a monic and proper triangular set. Wemodify the definition of
regular triangular sets (Aubry et al., 1999; Bouziane et al., 2001; Yang et al., 1996) in Rq and give an
exact upper bound for the number of solutions of a regular and proper triangular set.

We propose an improved zero decomposition algorithm which allows us to decompose the
zero set of a polynomial equation system in Rq as the disjoint union of the zero sets of proper
and monic triangular sets. As a consequence, we can give an explicit formula for the number of
solutions of the equation system. We prove that our elimination procedure to compute a triangular
set needs a polynomial number of polynomial multiplications, which is not valid for the general CS
method.

An element in R2 is called a Boolean polynomial. Solving Boolean polynomial systems is especially
important and more methods are available. This paper will focus on CS methods. We show that
for Boolean polynomial equations, the CS method proposed in this paper and that proposed in
(Chai et al., 2008) for Boolean polynomials could be further improved.

Firstly, we show that the bitsize complexity of the algorithm proposed in this paper is O(ln) for
Boolean polynomials, where n is the number of variables and l ≥ 2 is the number of equations. This
is the first complexity analysis for the Ritt–Wu style zero decomposition algorithms. The results in
(Gallo and Mishra, 1991) are only for the procedure to compute the CS of an ideal, which is similar
to the well-ordering procedure in the Ritt–Wu style decomposition (Wu, 1986). In (Szántó, 1999), a
zero decomposition algorithm based on the computation of resultants is given, whose complexity is
also single exponential. It seems to us that although the algorithms proposed in (Gallo and Mishra,
1991; Szántó, 1999) have nice complexity bounds, they are practically very inefficient. On the other
hand, the algorithm proposed in this paper is practically very efficient as shown by the experiments
presented in Section 6.

We also present a multiplication-free CS algorithm in R2, where the size of the polynomials
occurring in the well-ordering procedure is bounded by the size of the input polynomial system
and the worst case bitsize complexity of the algorithm is roughly O(nd), where n is the number of
indeterminates and d the degree of the input polynomials. This result is surprising, because repeated
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additions of polynomials can also generate polynomials of exponential sizes. In the general CSmethod,
the size of the polynomials is exponential (Gallo and Mishra, 1991; Szántó, 1999). Our result also
means that for a fixed d, the well-ordering procedure is a polynomial-time algorithm in n. The bottle
neck problem of intermediate expression swell is effectively avoided for certain classes of problems
due to the low complexity of the well-ordering procedure and the usage of SZDD (Minto, 1993). Our
experimental results also support this observation.

The algorithms are implemented in the case of Boolean polynomials. We conduct extensive
experiments of our methods for three kinds of polynomial systems. These systems are generated
in totally different ways, but they all have the block triangular structure. By block triangular
structure, we mean that the polynomial set can be divided into disjoint sets such that each set
consists of polynomials with the same leading variable and different sets have different leading
variables. Polynomial sets generated in many classes of stream ciphers are in triangular block form.
The experiments show that our improved algorithm is very effective for solving these polynomial
equations comparing to existing methods. We do not claim that our algorithm is faster in all cases.
For instance, the first HFE Challenge, which was solved by the Gröbner basis algorithm (Faugère and
Joux, 2003; Patarin, 1996), cannot be solved by our algorithm.

The rest of this paper is organized as follows. In Section 2, we introduce the notations. In Section 3,
we prove properties for the proper triangular sets. In Section 4, we present the improved zero
decomposition algorithm. In Section 5, we present a CS algorithm in R2. In Section 6, we present the
experimental results. In Section 7, conclusions are presented.

2. Notations and preliminary results

Let p be a prime number and q = pk for a positive integer k. Fq denotes the finite field with q
elements. For an algebraic equation, we will consider the problem of finding its solutions in Fq. Let
X = {x1, . . . , xn} be a set of indeterminates. Since we only consider solutions in Fq, we can work in
the ring

Rq = Fq[X]/(H)

where
H = {xq1 − x1, x

q
2 − x2, . . . , xqn − xn}. (1)

When wewant to emphasize the variables, we use the notation Rq[x1, . . . , xn] instead of Rq. It is easy
to see that Rq is not an integral domain. For any α ∈ Fq, xi − α is a zero divisor in Rq. An element P in
Rq has the following canonical representation:

P = αsMs + · · · + α0M0, αi ∈ Fq, (2)
whereMi is a monomial and deg(Mi, xj) ≤ q−1 for any j . We still call an element in Rq a polynomial.
In this paper, a polynomial is always in its canonical representation.

LetP be a set of polynomials inRq.We use Zeroq(P) to denote the common zeros of the polynomials
in P in the affine space Fn

q , that is,

Zeroq(P) = {(a1, . . . , an), ai ∈ Fq, s.t.,∀P ∈ P, P(a1, . . . , an) = 0}.

In this paper, when we say a variety in Fn
q , we mean Zeroq(P) for some P ⊆ Rq[x1, . . . , xn]. Let D be a

polynomial in Rq. We define a quasi variety to be

Zeroq(P/D) = Zeroq(P) \ Zeroq(D).

Let P be a set of polynomials in Fq[X]. Denote the zeros of P in an algebraically closed extension of
Fq as Zero(P). We use P to denote the image of P under the natural ring homomorphism:

Fq[X] ⇒ Rq.

We will give some preliminary results about the polynomials in Rq.

Lemma 1. Use the notations just introduced. We have Zero(P ∪ H) = Zeroq(P), where H is defined
in (1).
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Proof. Let P ∈ P. By the definition, we have P = P +


i Bi(x
q
i − xi), where Bi are some polynomials.

Note that any zero in Zeroq(P) is also a zero of xqi − xi. Then the formula to be proved is a direct
consequence of the above relation between P and P . �

Lemma 2. Let P be a polynomial in Rq. We have Pq
= P.

Proof. Since xqi = xi, for any monomial m in Rq we have mq
= m. Let P =


i αimi where mi are

monomials and αi ∈ Fq. Then Pq
= (


i αimi)

q
=


i α

q
i m

q
i =


i αimi = P . �

Lemma 3. Let I be a polynomial ideal in Rq. Then I is a radical ideal.

Proof. For any f s ∈ I with s an integer, there exists an integer k such that q + k(q − 1) ≥ s. Then
f sf q+k(q−1)−s = f q+k(q−1) ∈ I . By Lemma 2, f q+k(q−1) = f qf k(q−1) = f k(q−1)+1 = f q+(k−1)(q−1)

= · · · =

f q = f . Thus, we have f ∈ I , which implies that I is a radical ideal. �

Lemma 4. Let I be a polynomial ideal in Rq.

(1) I = (x0 − a0, . . . , xn − an) if and only if (a0, . . . , an) is the only solution of I.
(2) I = (1) if and only if I has no solutions.

Proof. If I = (x0−a0, . . . , xn−an), it is easy to see that (a0, . . . , an) is the only solution of I. Conversely,
let (a0, . . . , an) be the only solution of I. By Lemma 1, we have xi − ai = 0 on Zero(I ∪ H) in Fq[X],
where H is defined in (1). By Hilbert’s Nullstellensatz, there is an integer s such that (xi− ai)s is in the
ideal generated by I∪H inFq[X]. ConsideringRq, itmeans that (xi−ai)s is in I. By Lemma3, I is a radical
ideal in Rq. Thus, xi− ai is in I. This prove (1). For (2), if I has no solution, we have Zero(I∪H) = ∅. By
Hilbert’s Nullstellensatz, 1 ∈ (I ∪ H). That is, 1 ∈ I. �

Lemma 5. Let P ∈ Rq. Zeroq(P) = Fn
q iff P ≡ 0. Zeroq(P) = ∅ iff Pq−1

− 1 ≡ 0.

Proof. If P ≡ 0, then Zeroq(P) = Fn
q . Conversely, we prove the result by induction on n. If n = 1,

we consider the univariate polynomial P(x) ∈ Rq. Suppose that P(x) ≠ 0. Since deg(P, x) ≤ q − 1,
P has at most q − 1 solutions in Fq, a contradiction. Now assume that the result has been proved for
n = k. For n = k + 1, we have P(x1, . . . , xn) = f0x

q−1
n + f1x

q−2
n + · · · + fq−1, where fi is a k-variable

polynomial. By the induction hypothesis, if some fi is not 0, there exists an element (a1, a2, . . . , ak)
in Fk

q such that fi(a1, . . . , ak) ≠ 0. Then P(a1, . . . , ak) is a nonzero polynomial whose degree in xk+1
is less than q. Supposing ak+1 is not the solution of P(a1, . . . , ak), (a1, . . . , ak+1) is not the solution
of P , a contradiction. Thus, we have fi = 0 for all i. It means that P ≡ 0, and the first result is
proved.

If Zeroq(P) = ∅, then P ≠ 0 for any element in Fn
q , which implies that Pq−1

−1 = 0 for any element
in Fn

q . Then Pq−1
− 1 ≡ 0. Conversely, suppose that there is an element α ∈ Fn

q such that P(α) = 0,
which is impossible since Pq−1(α)− 1 ≠ 0. Thus, Zeroq(P) = ∅. �

As a consequence of Lemma 5, we have

Corollary 6. Let q = 2 and P ∈ R2 \ F2. Then Zero2(P) ≠ ∅.

But when q > 2, the corollary is not correct. For example, considering R3, it is easy to see that
Zero3(x2 + 1) = ∅.

Lemma 7. Let U, V , and D be polynomials in Rq. We have

(Uq−1V q−1
− 1) = (Uq−1

− 1, V q−1
− 1). (3)

(Uq−1V q−1
− Uq−1

− V q−1) = (U, V ). (4)
Zeroq(UV ) = Zeroq(U) ∪ Zeroq(V ). (5)

Zeroq(∅/D) = Zeroq(Dq−1
− 1). (6)

Zeroq(P) = Zeroq(P ∪ {U}) ∪ Zeroq(P ∪ {Uq−1
− 1}). (7)
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Proof. We have

(Uq−1V q−1
− 1) = (Uq−1V q−1

− 1,Uq−1(Uq−1V q−1
− 1))

= (Uq−1V q−1
− 1,Uq−1V q−1

− Uq−1)

= (Uq−1V q−1
− 1,Uq−1

− 1) = (Uq−1
− 1, V q−1

− 1).

This proves (3). Eq. (4) can be proved similarly:

(Uq−1V q−1
− Uq−1

− V q−1) = (Uq−1V q−1
− Uq−1

− V q−1,U(Uq−1V q−1
− Uq−1

− V q−1))

= (Uq−1V q−1
− Uq−1

− V q−1,U) = (U, V ).

Since Fq is a field, (5) is obvious. For any element α ∈ Fn
q,D(α) ≠ 0 means that Dq−1(α) − 1 = 0.

Conversely, for any element α ∈ Fn
q, if D(α) = 0, we have Dq−1(α) − 1 ≠ 0. This proves (6). Since

U(Uq−1
− 1) ≡ 0, (7) is a consequence of (5). �

From (6) of Lemma 7, we can see that a quasi variety in Fn
q is also a variety.

3. Proper triangular sets in Rq

In this section, we will introduce the concept of proper triangular sets for which we can give an
explicit formula for its number of solutions.

3.1. Triangular sets

Let P ∈ Rq. The class of P , denoted by cls(P), is the largest c such that xc occurs in P . Then xc is
called the leading variable of P , denoted as lvar(P). If P ∈ Fq, we set cls(P) = 0. If cls(P) = c , let us
regard P as a univariate polynomial in xc . We call deg(P, xc) the degree of P , denoted as deg(P). The
coefficient of P wrt xdc is called the initial of P , and is denoted by init(P). Then P can be represented
uniquely as the following form:

P = Ixdc + U (8)
where I = init(P) and U is a polynomial with deg(U, xc) < d. A polynomial P1 has higher ordering
than a polynomial P2, denoted as P2 ≺ P1, if cls(P1) > cls(P2) or cls(P1) = cls(P2) and deg(P1) >
deg(P2). If neither P1 ≺ P2 nor P2 ≺ P1, they are said to have the same ordering, denoted as P1 ∼ P2.
It is easy to see that≺ is a partial order on the polynomials in Rq.

A sequence of nonzero polynomials
A : A1, A2, . . . , Ar (9)

is a triangular set if either r = 1 and A1 ≠ 0 or 0 < cls(A1) < · · · < cls(Ar). A trivial triangular set is
a polynomial set consisting of a nonzero element in Fq. For a triangular set A, we denote IA to be the
product of the initials of the polynomials in A.

Let A′ : A′1, A
′

2, . . . , A
′

r ′ and A′′ : A′′1, A
′′

2, . . . , A
′′

r ′′ be two triangular sets. A′ is said to be of lower
ordering than A′′, denoted as A′ ≺ A′′, if either there is some k such that A′1 ∼ A′′1, . . . , A

′

k−1 ∼ A′′k−1,
while A′k ≺ A′′k ; or r

′ > r ′′ and A′1 ∼ A′′1, . . . , A
′

r ′′ ∼ A′′r ′′ . We have the following basic property for
triangular sets.
Lemma 8. A sequence of triangular sets steadily lower in ordering is finite. More precisely, let A1 ≻ A2
≻ · · · ≻ Am be a strictly decreasing sequence of triangular sets in Rq. Then m ≤ qn.

Proof. Let P be a polynomial in Rq. If cls(P) = c and deg(P) = d, P and xdc have the same ordering.
Since we only consider the ordering of the triangular sets, we may assume that the triangular sets
consist of powers of variables. In this case, two distinct triangular sets cannot have the same ordering.
To form a triangular set of this kind, we can choose one polynomial Mi from {0, xi, x2i , . . . , x

q−1
i } for

each i, and the triangular set is M1,M2, . . . ,Mn. Note that when Mi = 0, we will remove it from the
triangular set. Thus, there are qn − 1 nontrivial triangular sets consist of powers of variables. Adding
the trivial triangular set consist of 1, we have a sequence of triangular sets C1 ≻ C2 ≻ · · · ≻ Cqn . Let
A1 ≻ A2 ≻ · · · ≻ Am be a strictly decreasing sequence of triangular sets. IfAi is nontrivial, for P ∈ Ai,
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replace it by lvar(P)deg(P). If Ai is trivial, replace it by 1. Then we get a strictly decreasing sequence of
triangular setsB1 ≻ B2 ≻ · · · ≻ Bm. This sequencemust be a sub-sequence ofC1 ≻ C2 ≻ · · · ≻ Cqn .
Hence, m ≤ qn. �

For two polynomials P and Q , we use prem(Q , P) to denote the pseudo-remainder of Q with
respect to P . For a triangular set A defined in (9), the pseudo-remainder of Q wrt A is defined
recursively as

prem(Q , A) = prem(prem(Q , Ar), A1, . . . , Ar−1) and prem(Q ,∅) = Q .

Let R = prem(Q , A). Then we have

Is11 Is22 · · · I
sr
r Q =


i

QiAi + R (10)

where Ii = init(Ai) and Qi are some polynomials. The above formula is called the remainder formula.
Let P be a set of polynomials and A a triangular set. We use prem(P, A) to denote the set of nonzero
prem(P, A) for P ∈ P.

A polynomial Q is reduced wrt P ≠ 0 if cls(P) = c > 0 and deg(Q , xc) < deg(P). A polynomial
Q is reduced wrt a triangular set A if P is reduced wrt to all the polynomials in A. It is clear that the
pseudo-remainder of any polynomial wrt A is reduced wrt A.

The saturation ideal of a triangular set A is defined as follows

sat(A) = {P ∈ Rq| JP ∈ (A)}

where J is a product of certain powers of the initials of the polynomials in A. We have

Lemma 9. Let A = A1, . . . , Ar be a triangular set. Then sat(A) = (A1, . . . , Ar , I
q−1
A − 1)

Proof. Denote I = (A1, . . . , Ar , A0) and A0 = Iq−1A − 1. If P ∈ sat(A), then Iq−1A P ∈ A. There exist
polynomials Bi such that Iq−1A P =

r
i=1 BiAi. Hence, P =

r
i=1 BiAi − PA0 ∈ I. Conversely, let P ∈ I.

Then there exist polynomials Ci such that P =
r

i=1 CiAi + C0A0. Multiply IA to both sides of the
equation. Since IA(Iq−1A − 1) = 0, we have IAP =

r
i=1 IACiAi. Thus, P ∈ sat(A). �

As shown by the following example, saturation ideals have different properties comparing with
that in the usual polynomial ring.
Example 10. In R3, Let A = A1, A2, A1 = (x1 − 1)x2, A2 = (x1 + 1)x3. Then sat(A) = (A1, A2, (x21 −
1)2 − 1) = (x2, x3, x1).

3.2. Proper triangular sets

As we mentioned before, a triangular set could have no zero. For example, Zero3(x2 + 1) = ∅. To
avoid this problem, we introduce the concept of proper triangular sets.

A triangular setA = A1, A2, . . . , Ar is called proper, if the following condition holds: if cls(Ai) = ci
and deg(Ai) = di, then prem(xq−dici Ai, A) = 0.

The following lemmas show that proper triangular sets always have solutions.
Lemma 11. Let P(x) be a univariate polynomial in Rq, and suppose that deg(P(x)) = d. If prem
(xq−dP(x), P(x)) = 0, then P(x) = 0 has d distinct solutions in Fq.

Proof. Since P(x) is a univariate polynomial, init(P) ∈ Fq. If prem(xq−dP(x), P(x)) = 0 in Rq, we
have xq−dP(x) = Q (x)P(x), where Q (x) is a polynomial and deg(Q (x)) < q − d. Considering the
above equation in Fq[x], there is a polynomial C such that xq−dP(x) + C(xq − x) = Q (x)P(x) in
Fq[x], where xq−dP(x) + C(xq − x) is equal to the canonical representation of xq−dP(x) in Rq. Thus,
we have (xq−d − Q (x))P(x) = −C(xq − x). Since all the elements of Fq are solutions of xq − x, the
q distinct elements of Fq are solutions of (xq−d − Q (x))P(x). Note that deg(Q (x)) < q − d. Then
deg(xq−d−Q (x)) = q− d. Thus, xq−d−Q (x) has at most q− d solutions in Fq, which means that P(x)
has at least d distinct solutions in Fq. However, deg(P(x)) = d implies P(x) has at most d solutions in
Fq. Hence, we can conclude P(x) has d distinct solutions in Fq. �
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A triangular set A is calledmonic if the initial of each polynomial in A is 1. A monic triangular set
is of the following form:

A1 = xd1c1 + U1, A2 = xd2c2 + U2, . . . , Ar = xdrcr + Ur

where Ui is a polynomial in x1, . . . , xci such that deg(Ui, xci) < di.
For a triangular set A : A1, . . . , Ar , we call deg(A1)deg(A2) · · · deg(Ar) the degree of A, denoted as

deg(A). Let Y be the set {xi ∈ X| xi is the leading variable of some Aj ∈ A}. We use U to denote X \ Y
and call the variables in U parameters ofA. Thenwe call |U| the dimension ofA, denoted as dim(A).

The following result shows that a monic proper triangular set has nice properties by giving an
explicit formula for the number of solutions. The result is useful because we will prove later that the
zero set for any polynomial system can be decomposed as the union of the zero sets of monic proper
triangular sets.

Theorem 12. Let A be a monic triangular set. Then A is proper if and only if |Zeroq(A)| = deg(A) ·

qdim(A).

Proof. Assume that A is proper. For the parameters in U, we can substitute them by any element of
Fq. Since |U| = dim(A), there are qdim(A) parametric values for U. For a parametric value U0 of U and
a polynomial P ∈ Rq, let P ′ denote P(U0). After the substitution, we obtain a new monic triangular
set A′ : A′1, . . . , A

′
r , where cls(A′i) = cls(Ai) and deg(A′i) = deg(Ai). Let ci = cls(Ai) and di = deg(Ai).

Since A is a proper triangular set, we have xq−d1c1 A1 = PA1. Then xq−d1c1 A′1 = P ′1A
′

1. By Lemma 11,
A′1 has d1 distinct solutions. For a solution α of A′1, consider A′2(α). Since A is proper, we have
xq−d2c2 A2 = Q1A1+Q2A2 and hence xq−d2c2 A′2(α) = Q ′1(α)A′1(α)+Q ′2(α)A′2(α). Since A′1(α) = 0, we have
xq−d2c2 A′2(α) = Q ′2(α)A′2(α). By Lemma 11, A′2(α) has d2 distinct solutions. By repeating the process, we
can prove that A′ has d1d2 · · · dr = deg(A) distinct solutions. Hence, |Zeroq(A)| = deg(A) · qdim(A).

Conversely, let us assume that A has N = deg(A) · qdim(A) solutions. Since A is monic, it means
for any parametric value U0 of U and any point x in Zeroq(A1(U0), . . . , Ai−1(U0)), Ai(U0, x) has deg(Ai)

distinct solutions. Let Ai = xdici + Vi for any i. For A1, suppose prem(xq−d1c1 A1, A) = R1 ≠ 0. Then
we have (xq−d1c1 − P1)A1 = R1, where P1 is a polynomial. Choose a parametric value U0 of U such that
R1(U0) ≠ 0. Then A1(U0) has d1 distinct solutions, this contradicts to 0 < deg(R1(U0), xc1) < d1. Thus,
R1 = 0. Now we consider A2. Suppose prem(xq−d2c2 A2, A) = R2 ≠ 0. Then we have two polynomials
Q1 and Q2 such that xq−d2c2 A2 = Q1A1 + Q2A2 + R2. Choose a parametric value U1 of U such that
R2(U1) ≠ 0. Since deg(R2, xc1) < d1, there is a solution x of A1(U1) such that R2(U1, x) ≠ 0. Then we
have (xq−d2c2 − Q1(U1, x))A2(U1, x) = R2(U1, x). A2(U1, x) has d2 distinct solutions which contradicts
to 0 < deg(R2(U1, xc2)) < d2. Thus, R2 = 0. Similarly, we have prem(xq−dici Ai, A) = 0. Hence, A is
proper. �

As a consequence of Theorem 12, a monic proper triangular set is square-free.
The concept of regular chains is important because of it has several nice properties (Aubry et al.,

1999; Bouziane et al., 2001; Yang et al., 1996). The usual definition of regular chains need to be
modified as shown by the following example. This is due to the fact that Rq is a ringwith zero divisors.

Example 13. InR3, letA1 = x1x2,A1 = (x21−1)x3, andA = A1, A2. According to the usual definition,A
is a regular chain. A is also proper. But, Zero3(A/IA) = Zero3(sat(A)) = ∅ since IA = x1(x21−1) = 0
in R3.

For two polynomials P,Q ∈ Rq, let resl(P,Q , xs) be the resultant of P and Q wrt xs in Rq. Let A be
a triangular set of form (9) such that ci = cls(Ai). The resultant of P wrt A is defined recursively as:
resl(P, A) = resl(resl(P, Ar , xcr ), A1, . . . , Ar−1) and resl(P, {}) = P .

A chain is called regular if
n

i=1

resl(I(Ai); A1, . . . , Ai−1) ≠ 0.
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Regular chains have the following property.

Theorem 14. Let A be a regular and proper chain and U be the parameter set of A. Then, there exists a
parametric value U0 of U such that |Zeroq(A(U0)/IA(U0))| = |Zeroq(A(U0))| = deg(A).

Proof. Let Ri = resl(I(Ai); A1, . . . , Ai−1) and R =
n

i=1 Ri. Since R ≠ 0 and R is a polynomial in Rq[U],
by Lemma 5, we can choose a parametric valueU0 ofU such that R(U0) ≠ 0. Then, we have Ri(U0) ≠ 0.
R1(U0) ≠ 0 means that I1(U0) ≠ 0. Similar to the proof of Theorem 12. we can show that A1(U0) has
deg(A1) distinct solutions. R2(U0) ≠ 0 implies that Zeroq(I2(U0), A1(U0)) = ∅. Thus, for a solution x1,1
of A1(U0) = 0, I2(U0, x1,1) ≠ 0 and A2(U0, x1,1) has deg(A2) distinct solutions. Recursively, we have
|Zeroq(A(U0)/IA(U0))| = |Zeroq(A(U0))| = deg(A). �

4. An efficient zero decomposition algorithm in Rq

In this section, wewill give an improved algorithmwhich can be used to decompose the zero set of
a polynomial system into the union of zero sets of monic triangular sets. Due to the special property of
Rq, this algorithm has better properties and lower complexities than the general zero decomposition
algorithm and the output is stronger.

First, note that the following zero decomposition theorem (Chou and Gao, 1990; Kalkbrener, 1993;
Lazard, 1991; Maza, 2000; Wang, 1993; Wu, 1986) is still valid and the proof is also quite similar.

Theorem 15. There is an algorithm which permits to determine for a given polynomial set P in a finite
number of steps regular and proper triangular sets Aj, j = 1, . . . , s such that

Zeroq(P) = ∪s
j=1Zeroq(Aj/IAj) = ∪

s
j=1Zeroq(sat(Aj))

where sat(Aj) is the saturation ideal of Aj.

In Rq, we can give the following improved zero decomposition theorem which allows us to
compute the number of solutions for a finite set of polynomials.

Theorem 16. For a finite polynomial set P, we can compute monic proper triangular setsAj, j = 1, . . . , s
such that

Zeroq(P) = ∪s
i=1Zeroq(Ai)

such that Zeroq(Ai) ∩ Zeroq(Aj) = ∅ for i ≠ j. As a consequence, we have

|Zeroq(P)| =

s
i=1

deg(Ai) · qdim(Ai).

In the rest of this section, we will prove the above theorem by giving a zero decomposition
algorithm and analyze its complexity in the case of Boolean polynomials.

4.1. A top-down characteristic set algorithm

In this section, we will give a top-down characteristic set algorithm TDCS that allows us to
compute a decomposition which has the properties mentioned in Theorem 16.

Before giving the zero decomposition algorithm, we first give an algorithm to compute a triangular
set. The algorithm works from the polynomials with the largest class and hence is a top-down zero
decomposition algorithm. The idea of top-down elimination is explored in (Kapur and Wan, 1990;
Wang, 1993). The key idea of the algorithm is as follows. Let Q = Ixdc + U be a polynomial with
largest class and smallest degree in xc in a polynomial set Q. If I = 1, we can reduce the degrees of
the polynomials in Q by taking R = prem(Q,Q ). Since I = 1, we have

Zeroq(Q) = Zeroq(R ∪ {Q }).

If I ≠ 1, by (7), we split the zero set into two parts:

Zeroq(Q) = Zeroq(Q ∪ {Iq−1 − 1}) ∪ Zeroq(Q \ {Q } ∪ {I,U}). (11)
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In the first part, since I ≠ 0 and Iq−1 − 1 = 0, Q can be replaced by Q1 = xdc + Iq−2U and we can
treat this part as in the first case. The second part is simpler than Q and can be treated recursively.
The following well-ordering procedure is based on the above idea.

Algorithm 1. —TDTriSet(P)
Input: A finite set of polynomials P.
Output: A monic triangular set A and a set of polynomial systems P∗ such that Zeroq(P) =
Zeroq(A) ∪Q∈P∗ Zeroq(Q), Zeroq(A) ∩ Zeroq(Q1) = ∅, and Zeroq(Q1) ∩ Zeroq(Q2) = ∅ for all
Q1, Q2 ∈ P∗.

1 Set A = ∅ and P∗ = ∅.
2 While P ≠ ∅ do

2.1 If some nonzero element α of Fq is in P, Zeroq(P) = ∅. Return A = ∅ and P∗.
2.2 Let P1 ⊂ P be the polynomials with the highest class.
2.3 Let Q ∈ P1 be a polynomial with lowest degree.
2.4 Let Q = Ixdc + U such that cls(Q ) = c , deg(Q ) = d and init(Q ) = I .
2.5 If I = 1 do

2.5.1 Set R = prem(P1,Q ).
2.5.2 If the classes of polynomials in R are lower than c

(this situation will always happen when q = 2), do
A = A ∪ {Q }.
P = R ∪ {P \ P1}.

2.5.3 Else, do
P = R ∪ {Q } ∪ {P \ P1} and goto 2.1.

2.6 Else do
2.6.1 Set Q1 = xdc + Iq−2U and P2 = P1 \ {Q }.
2.6.2 P = prem(P2,Q1) ∪ {Iq−1 − 1} ∪ {P \ P1}.
2.6.3 P1 = {P \ {Q }} ∪A ∪ {I,U}.
2.6.4 P∗ = P∗ ∪ {P1}.
2.6.5 Set R = prem(P2,Q1).
2.6.6 If the classes of polynomials in R are lower than c , do

A = A ∪ {Q1}.
2.6.7 Else, set P = P ∪ {Q1} and goto 2.1.

3 Return A and P∗.

The following theorem shows that to compute a monic triangular set in Rq, we need only a
polynomial number of polynomial arithmetic operations.

Theorem 17. Algorithm TDTriSet is correct and in thewhole algorithmwe needO(n2q2+nlq) polynomial
multiplications where l = |P|. In particular, we need O(nl) polynomial multiplications when q = 2.

Proof. Let P1 ⊂ P be the set of polynomials with the highest class c and Q ∈ P1 a polynomial with
lowest degree in xc . Let c = cls(Q ), d = deg(Q ) and I = init(Q ). If I = 1, then for P ∈ P1, as
a consequence of remainder formula (10), Zeroq({Q , P}) = Zeroq({Q , prem(P,Q )}). Therefore, we
have

Zeroq(P) = Zeroq((P \ P1) ∪ {Q } ∪ {prem(P,Q ) ≠ 0 | P ∈ P1}).

If I ≠ 1, by (7), we can split Zeroq(P) as the following two parts:

Zeroq(P) = Zeroq(P ∪ {Iq−1 − 1}) ∪ Zeroq(P ∪ {I}) (12)

= Zeroq((P \ {Q }) ∪ {Q1} ∪ {Iq−1 − 1}) ∪ Zeroq((P \ {Q }) ∪ {I,U}) (13)

where Q1 = xc + Iq−2U . The first part of (13) can be treated similarly to the case of I = 1, and the
second part of (13) will be a polynomial set in the output. This proves that if we have the output it
must be correct.



664 X.-S. Gao, Z. Huang / Journal of Symbolic Computation 47 (2012) 655–679

Now let us prove the termination of the algorithm. After each iteration of the loop, the lowest
degree of the polynomials with highest class in P will decrease. Then the highest class of the
polynomials in P will be reduced and the polynomial Q will be added to A. Hence, the loop will end
and give a triangular set A and some polynomial sets P∗.

Finally, wewill analyze the complexity of the algorithm. Let l = |P|. After each iteration, the lowest
degree of the highest class of the polynomials in P will be reduced at least by one. Then, this loop will
execute atmost n(q−1) times. After each iteration, if I = 1, then the new P has atmost l polynomials.
If I ≠ 1, after this iteration there are two cases:
(a) Except Q we still have some polynomials with this class. Then, the new P contains at most l + 1

polynomials;
(b) The highest class is eliminated by Q . Then, the new P contains at most l polynomials.

Therefore, in the whole algorithm there are at most n(q− 2)+ l polynomials (The number is l when
q = 2) .

In an iteration, suppose we use Q = Ixdc + U to eliminate other polynomials. First we should set Q
to be monic. It means that we should compute Q1 = xdc + Iq−2U and Iq−1 − 1, so we need 2(q − 2)
polynomialmultiplications. Thus, in thewhole algorithmweneed atmost 2n(q−1)(q−2) polynomial
multiplications in order to obtain the monic polynomials. Then we want to get prem(P,Q1). Since Q1
is monic, it takes at most one polynomial multiplication when we reduce the degree of P by one. Let
D be the sum of the degrees of polynomials with highest class. Then D decreases by one after one
polynomial multiplication. Therefore, we need at most (n(q − 2) + l)(q − 1) − 1 multiplications to
reduce D from (n(q − 2) + l)(q − 1) to 1. At the same time, we eliminate the highest class. Thus, in
the whole algorithm, we need at most n2(q− 2)(q− 1)+ nl(q− 1)− n polynomial multiplications
to get the pseudo-remainders. In all, the algorithm needs O(n2q2 + nlq) polynomial multiplications,
and when q = 2 the number is O(nl). �

Lemma 18. Let P be an input of TDTriSet. Assume that there is a polynomial P in P such that cls(P) = c
and init(P) = 1. Let A be the monic triangular set in the output. Then, there is a polynomial P ′ ∈ A such
that cls(P ′) = c and deg(P ′) ≤ deg(P).
Proof. Since there is a P with class c , we need to deal with this class. And we will eliminate this class
by P or by a Q with class c and lower degree. This polynomial is the P ′. �

By using TDTriSet, we have the following zero decomposition algorithm.
Algorithm 2. —TDCS(P)
Input: A finite set P of polynomials.
Output:Monic proper triangular sets satisfying the properties in Theorem 16.

1 Set P∗ = {P}, A∗ = ∅ and C∗ = ∅.
2 While P∗ ≠ ∅ do

2.1 Take a polynomial set Q from P∗ and set P∗ = P∗ \ {Q}.
2.2 Let A and Q∗ be the output of TDTriSetwith input Q.
2.3 if A ≠ ∅, set A∗ = A∗ ∪ {A}.
2.4 P∗ = P∗ ∪ Q∗.

3 Suppose A∗ = {A1, . . . , Ar} and Ai = {Ai1, . . . , Aipi}.
4 Set P∗ = {} and for i from 1 to r do

4.1 Set B = ∅.
4.2 For j from 1 to pi do

4.2.1 Let cls(Aij) = cij and deg(Aij) = dij.
4.2.2 If R = prem(x

q−dij
cij Aij, Ai) ≠ 0, set B = B ∪ {R}.

4.3 If B ≠ ∅, set P∗ = P∗ ∪ {Ai ∪B}.
4.4 Else, set C∗ = C∗ ∪ {Ai}.

5 If P∗ ≠ ∅, set A∗ = ∅ and goto 2.
6 Return C∗.

Theorem 19. Algorithm TDCS is correct.
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Proof. By Theorem 17, if the loop in step 2 ends, we can obtain A1, . . . , Aq such that Zero(P) =
∪iZero(Ai). In step 4, we check whether Ai is a proper triangular set. If it is proper, we save
it in the output list C∗. If Ai is not proper, suppose Ai = Ai1, . . . , Aipi . we add prem(x

q−dij
cij Aij, Ai)

≠ 0 to Ai, and obtain a new polynomials set Bi. We have Zeroq(Ai) = Zeroq(Ai, x
q−dij
cij Aij) =

Zeroq(Ai, prem(x
q−dij
cij Aij, Ai)). Thus, Zeroq(Ai) = Zeroq(Bi). Thenwe treatedBi recursively by step 2.

Hence, if {A′1, . . . , A′s} is the output of the algorithm, we have Zeroq(P) = ∪iZeroq(A′i).
Now we prove the termination of the algorithm. Firstly, we prove the termination of step 2. For

a polynomial set P, we assign an index (c, cn,q−1, cn,q−2, . . . , cn,1, . . . , c1,q−1, . . . , c1,1) where ci,j is
the number of polynomials in P and with class i and degree j and for i > c , P contains at most one
polynomial with class i and this polynomial is monic. Note that, in the TDCS algorithm, we need only
to do eliminations on polynomials in P with class smaller than or equal to c. To prove the termination
of step 2, we will show that each polynomial set in Q∗ has a smaller index than that of Q in the
lexicographical ordering. To prove this, we need only to show that in each step of Algorithm TDTriSet,
the updated polynomial set has a lower index than that of the original one. In Algorithm TDTriSet,
the polynomial set P is updated in three ways. Firstly, a polynomial P is replaced by prem(P,Q )
where Q is a monic polynomial. This will decrease of leading degree of P and hence decrease the
index of the polynomial set. Secondly, in step 2.6.2, the polynomial Q is replaced by Q1 and a new
polynomial Iq−1 − 1 is added to the polynomial. If prem(P2,Q1) ≠ ∅, the index of P deceases since
the degrees of certain polynomials with class c are decreased. If prem(P2,Q1) = ∅, the index of P also
deceases because Q1 is now the only polynomial with class c in P and the first component in the index
is decreased at least by one. Thirdly, in step 2.6.3, the polynomialQ is replaced by {I,U}. It is clear that
the index of {I,U} is less than the index of {Q }. It is easy to show that a strictly decreasing sequence
of indexes must be finite. This proves the termination of the step 2.

Supposewe obtainA∗ = A1, . . . , Aq after step 2. If allAi are proper, the algorithmwill terminate.
IfAi = Ai1, . . . , Aipi is not proper, similar as above, we obtain a polynomial setBi such that there exist
polynomials in Bi, which are reduced wrt Ai. To prove the termination of the whole algorithm, it is
sufficient to show that the newmonic triangular sets we obtain from Bi in step 2 is of lower ordering
than that of Ai. Note that Bi \Ai is the set of polynomials in Bi which are reduced wrt Ai.

Now letQ1 be the set of polynomials with highest class inBi\Ai and Q be the one of lowest degree
in Q1. Let Q = Ixdc + U . Then in TDTriSet, we splits Zeroq(Bi) into two parts:

Zeroq(Bi) = Zeroq({Bi \ {Q }} ∪ {xdc + Iq−2U} ∪ {Iq−1 − 1}) ∪ Zeroq({Bi \ {Q }} ∪ {I,U}).

Note that Ai ⊆ Bi and if there is a polynomial A′ in Ai with class c then deg(A′) > deg(xdc + Iq−2U).
Thus, by Lemma 18, we can conclude that the monic triangular sets we obtain from {Bi \ {Q }}∪ {xdc +
Iq−2U} ∪ {Iq−1 − 1} is of lower ordering than Ai. For {Bi \ {Q }} ∪ {I,U}, it can be recursively treated
as Bi. Hence, we prove the termination of the algorithm. �

We use the following simple example to illustrate how the algorithm works.

Example 20. In R3, let P = {x1x2x23 − 1}.
In Algorithm TDTriSet, we have Zero3(P) = Zero3(x23− x1x2, x21x

2
2−1)∪Zero3(x1x2, 1). Obviously,

Zero3(x1x2, 1) = ∅. Then, Zero3(P) = Zero3(x23− x1x2, x21x
2
2− 1) = Zero3(x23− x1x2, x22− 1, x21− 1)∪

Zero3(x21, 1). The algorithm returns A = {x21 − 1, x22 − 1, x23 − x1x2} and ∅.
In Algorithm TDCS, we check whether A is proper: prem(x3(x23 − x1x2), A) = (1 − x1x2)x3,

prem(x2(x22 − 1), A) = prem(x1(x21 − 1), A) = 0. We obtain a new P′ = {A, (x1x2 − 1)x3} such
that Zero3(P) = Zero3(P′).

Execute Algorithm TDTriSet with input P′. Choose (x1x2 − 1)x3 to eliminate x3. Then Zero3(P′) =
Zero3(x3, x23−x1x2, x22−1, x1x2+1, x21−1)∪Zero3(x23−x1x2, x1x2−1, x22−1, x21−1). For the first part,
we have Zero3(x3, x23− x1x2, x22− 1, x1x2+ 1, x21− 1) = Zero3(x3, x1x2, x22− 1, x1x2+ 1, x21− 1) = ∅.
For the second part, we execute Algorithm TDTriSet again and have Zero3(x23 − x1x2, x1x2 − 1, x22 −
1, x21 − 1) = Zero3(x23 − x1x2, x2 − x1, x22 − 1, x21 − 1) ∪ Zero3(x23 − x1x2, x22 − 1, x21 − 1, x1, 1) =
Zero3(x23 − x1x2, x2 − x1, x21 − 1). Let A′ = {x23 − x1x2, x2 − x1, x21 − 1}. Thus, Zero3(P) = Zero3(A

′).
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Returning to Algorithm TDCS, it is easy to check that A′ is proper. Then we have Zero3(P) =
Zero3(x23 − 1, x2 − x1, x21 − 1), and |Zero3(P)| = 30(2× 1× 2) = 4.

4.2. Complexity analysis of TDCS in R2

As we mentioned in Section 1, a complexity analysis for the zero decomposition algorithm is
never given. Although, TDCS is much simpler than the zero decomposition algorithm over the field
of complex numbers, it is still too difficult to give a complexity analysis. However, we are able to give
a worst case complexity analysis for algorithm TDCS in the very important case of R2.

In R2, it is easy to prove that a monic triangular set is always proper. Therefore, we do not need
to check whether a triangular set is proper in Algorithm TDCS. Moreover, by (4), we can modify the
Step 2.6.3 of TDTriSet as

P1 = {P \ {Q }} ∪A ∪ {U, I} = {P \ {Q }} ∪A ∪ {IU + I + U},

and call the new algorithm TDTriSet2. After this modification, the number of polynomials in the new
component P1 will not be bigger than |P|. From the proof of Theorem 17, we know that in the whole
algorithm TDTriSet2 with input P the number of polynomials is also at most |P|. Then we obtain the
following algorithm:
Algorithm 3. — TDCS2(P)
Input: A finite set of Boolean polynomials P.
Output: A sequence of monic triangular sets satisfying Theorem 16.

1 Set P∗ = {P}, A∗ = ∅ and C∗ = ∅.
2 While P∗ ≠ ∅ do

2.1 Choose a polynomial set Q from P∗.
2.2 Let Q be the input of TDTriSet2. Let A and Q∗ be the output.
2.3 if A ≠ ∅, set A∗ = A∗ ∪ {A}.
2.4 P∗ = P∗ ∪ Q∗.

3 Return A∗.

Theorem 21. The bitsize complexity of Algorithm TDCS2 is O(ln) = O(2n log l), where l is the number of
polynomials in P.
Remark 22. It is interesting to note that the complexity for the exhaust search algorithm isO(∥P∥·2n),
where ∥P∥ is the bitsize of the polynomials inP as defined in Section 5.2. The complexity of the exhaust
search is generally better than our algorithm. But on the other hand, our algorithm can solve nontrivial
problems with n ≥ 128 as shown in Sections 6.2 and 6.3, while it is clear that the exhaust search
algorithm cannot do that. The complexity to compute a Gröbner basis of P ∪H (H is defined in (1)) is
known to be a polynomial in dn where d is the degree of the polynomials in P (Lazard, 1983). Recently,
Bardet, Faugère, Salvy gave better complexity bounds under the assumption of semi-regularity
(Bardet et al., 2003). It is an interesting problem that whether there exists a deterministic algorithm
to find all the solutions of a Boolean polynomial system with complexity less than O(2n).

We will prove Theorem 21 in the rest of this section. In order to estimate the complexity of
algorithm TDCS2, we need to consider theworst case in the algorithm.We call the zero decomposition
process in the worst caseW-Decomposition.

In the worst case, we consider a set P containing l Boolean polynomials which are with the highest
class n and the initials of all these l polynomials are not 1. Then we need to choose one polynomial
Q = Ixn + U ∈ P and add I + 1 to P. Let Q1 = xn + U . Then we have:

Zeroq(P) = Zeroq(prem(P \ {Q },Q1),∪{Q1, I + 1})) ∪ Zeroq(P \ {Q } ∪ {IU + I + U}). (14)
In the worst case, we assume that the class of I + 1 is n − 1 and prem(P \ {Q },Q1) contains l − 1
nonzero polynomials with class n − 1. Moreover, in the second component in (14), we have a new
polynomial IU + I + U which is also of class n− 1. When we repeat the above procedure for the two
components in (14), the above situations always happen. In other words, in the worst case, when we
eliminate a variable xc , the newly generated nonzero polynomials are always of class c − 1.
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We can illustrate the W-decomposition by the following figure:
(l, k, . . . , . . .)⇒ (l− 1, k+ 1, . . .)⇒ (l− 2, k+ 2, . . .)⇒ · · ·

↓ ↓ ↓

(0, l+ k, . . .)⇒ · · ·
...

(0, l+ k, . . .)⇒ · · · ↓

↓
...

...

In this figure and the rest of this section, (ln, ln−1, . . . , l1) represents a polynomial set which
contains li polynomials with class i. The right arrows point to the second component in (14), while the
down arrows point to the first component in (14) or more precisely, to prem(P \ {Q },Q1) ∪ {I + 1}.

To solve a polynomial set P with l elements, we will obtain a lot of components. We can sort these
components into n groups by the variables involved in them. For any i = 1, 2, . . . , n, the i-th group
consists of the components where the variables to be eliminated are {x1, x2, . . . , xi}. Suppose there
are ki elements in the i-th group. We define the time-polynomial of P to be

B(P) = knTn + kn−1Tn−1 + · · · + k1T1 (15)

where Ti is a quantity tomeasure the complexity for executing TDTriSet2 whose input is a polynomial
set consisting of l polynomials in i variables {x1, x2, . . . , xi}. Ti could be the bitsize of the involving
polynomials or the number of arithmetic operations needed in the algorithm. Obviously, B(P) gives
the corresponding worst case complexity when the meaning of Ti is fixed.

For two polynomial sets P1 and P2, let B(P1) = knTn + · · · + k1T1 and B(P2) = k′nTn + · · · + k′1T1.
If ki > k′i for all i, we say that B(P1) is of higher ordering than B(P2), denoted by B(P1) > B(P2). We
define

S(P) = B(P)− Tc

where c is the highest class of the polynomials in P. Thus, S(P) is the complexity for solving all the
components which are originated from the second component in (14). The order of S(P) can also be
defined as B(P). Therefore, we can use Eq. (15) as the recursive formula to compute the worst case
complexity of the algorithm.

The following result shows that the problems solved with w-decomposition is indeed the worst
case in terms of complexity.

Lemma 23. Let Q be a polynomial set of the form (l, 0, . . . , 0), which need to be solved with w-
decomposition. Let B(P) be the time-polynomial of any other problem with |P| ≤ l. We have B(Q) ≥ B(P)
and S(Q) ≥ S(P).

Proof. We prove the lemma by induction. If n = 1, no components are generated, so we have
B(P) = T1 and S(P) = 0 for any problem, and the lemma holds for n = 1. Now suppose we have
proved the lemma for n = k. If n = k + 1, we have the following figure for the w-decomposition of
problem (l, 0, . . . , 0):

(l, 0, . . . , 0)⇒ (l− 1, 1, . . . , 0)⇒ · · · ⇒ (1, l− 1, 0, . . . , 0)⇒ (0, l, 0, . . . , 0)
↓ ↓ ↓

(0, l, 0, . . . , 0) (0, l, 0, . . . , 0) · · · (0, l, 0, . . . , 0)
We can get the following recursive formula for the time-polynomial of (l, 0, . . . , 0):

B(l, 0, . . .) = lTn + B(0, l, 0, . . .)+ lS(0, l, 0, . . . , 0) (16)

where (0, l, 0, . . .) represents a w-decomposition problem with l input polynomials in variable
{x1, . . . , xn−1}.

For any other polynomial set P with no more than l input polynomials, we can write it as
(ln, ln−1, . . . , l1). If ln = 0 the lemma can be proved easily from Eq. (16). Now we assume ln > 0.
For the ln polynomials with class n, if there is a polynomial with initial 1, we will not generate any
component when we eliminate class n, then B(P) = Tn + S(P′). Note that |P′| ≤ l and the elements
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of P′ are all have n− 1 variables {x1, . . . , xn−1}. Thus B(l, 0, . . .) ≥ B(P) and S(l, 0, . . .) ≥ S(P) by the
hypothesis.

If there exist no polynomials with initial 1 in these ln polynomials. we have the following
decomposition figure:

(ln, . . .)⇒ (ln − 1, . . .)⇒ · · · ⇒ (1, . . .)⇒ P0
↓ ↓ ↓

P1 P2 · · · Pln

Thus, we have

B(P) = lnTn + B(P0)+

ln
i=1

S(Pi).

Note that Pi has at most n − 1 variables {x1, . . . , xn} and |Pi| ≤ l, for any i = 0, 1, . . . , ln. By the
hypothesis we have S(Pi) ≤ S(0, l, 0, . . . , 0) and B(P0) ≤ B(0, l, 0, . . . , 0). Since l ≥ ln we can
conclude that B(l, 0, . . .) ≥ B(P) and S(l, 0, . . .) ≥ S(P). Consequently, the lemma holds in any case
for n = k+ 1. �

Proof of Theorem 21. From Eq. (16), we can obtain the value of B(l, 0, . . . , 0). Write B(0, . . . , 0, l, 0,
. . . , 0) as Bi and S(0, . . . , 0, l, 0, . . . , 0) as Si, where l is in the i-th coordinate. Then we have Bn =

l(Tn − Tn−1)+ (l+ 1)Bn−1. It is easy to check that for n ≥ 3 we have

Bn = lTn + l2Tn−1 + l2(l+ 1)Tn−2 + · · · + l2(l+ 1)n−3T2 + (l+ 1)n−2T1.

If the variables of input polynomials are {x1, . . . , xk}, the number ofmonomials occurring in TDTriSet2
are at most 2k, and therefore the bitsize complexity of multiplication is 2 · 4k. By Theorem 17, we
can substitute Tk with (2 · 4k)k(l − 1) for any k ≥ 2 and T1 can be set to 0. We have Bn ≈
2(43ln+1−4n+1l3)/(l−4)2+43l(ln−2nl4n−2)/(l−4). Since l >> 4, we have proved Theorem 21. �

5. A multiplication free zero decomposition algorithm in R2

It is known that a major difficulty in computing a zero decomposition is the occurrence of large
polynomials which are caused mainly by multiplication of polynomials. Due to this reason, even
the procedure to compute one triangular set, called well-ordering procedure in (Wu, 1986), has
exponential complexity for all known CS methods. In order to overcome this difficulty, we introduce
a zero decomposition algorithm in R2, where only additions of polynomials are used. We show that
the well-ordering procedure in our multiplication free algorithm has polynomial time complexity for
input polynomials with fixed degree.

5.1. The algorithm

The key idea of the algorithm is to avoid polynomial multiplications. Before doing the pseudo-
remainders, we reduce the initials of the polynomials in P1 in step 2.2 of the Algorithm TDTriSet to 1
by repeatedly using (11). For such polynomials, we have the following result.
Lemma 24. Let P = xc + U1 and Q = xc + U2 be polynomials with class c and initial 1. Then, we have
deg(prem(Q , P)) ≤ max{deg(U1), deg(U2)}.
Proof. In that case, the pseudo-remainder needs additions only: prem(Q , P) = U1 + U2. The lemma
follows from this formula directly. �

Based on the above idea, Algorithm TDTriSet can be modified to the following multiplication free
(MF) well-ordering procedure to compute a triangular set.
Algorithm 4. — MFTriSet(P)
Input: A finite set of polynomials P.
Output: A monic triangular set A and a set of polynomial systems P∗ such that Zero2(P) =
Zero2(A) ∪Q∈P∗ Zero2(Q), Zero2(A) ∩ Zero2(Q1) = ∅, and Zero2(Q1) ∩ Zero2(Q2) = ∅ for all
Q1, Q2 ∈ P∗.
1 Set P∗ = {}, A = ∅.
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2 While P ≠ ∅ do
2.1 If 1 ∈ P, Zero2(P) = ∅. Set A = ∅ and return A and P∗.
2.2 Let P1 ⊂ P be the polynomials with the highest class.
2.3 Let P2 = ∅, Q1 = P \ P1.
2.4 While P1 ≠ ∅ do

Let P = Ixc + U ∈ P1, P1 = P1 \ {P}.
Q2 = P1 ∪A ∪ Q1 ∪ P2 ∪ {I,U}.
P∗ = P∗ ∪ {Q2}.
P2 = P2 ∪ {xc + U}, Q1 = Q1 ∪ {I + 1}.

2.5 Let Q = xc + U be a polynomial with lowest degree in P2.
2.6 A = A ∪ {Q }.
2.7 P = Q1 ∪ prem(P2,Q ).

3 Return A and P∗.

In Step 2.4, we use formula (11) in R2, that is, for P = Ixc + U ,

Zero2(P) = Zero2({xc + U, I + 1}) ∪ Zero2({I,U})

to split the polynomial set.
With AlgorithmMFTriSet, we can easily give a multiplication-free zero decomposition algorithm:

we just need to replace Algorithm TDTriSet2 by AlgorithmMFTriSet in Algorithm TDCS2. We call this
algorithmMFCS.
Algorithm 5. — MFCS(P)
Input: A finite set of polynomials P.
Output:Monic proper triangular sets satisfying the properties in Theorem 16.

1 Set P∗ = {P}, A∗ = ∅ and C∗ = ∅.
2 While P∗ ≠ ∅ do

2.1 Choose a polynomial set Q from P∗.
2.2 Let Q be the input ofMFTriSet. Let A and Q∗ be the output.
2.3 if A ≠ ∅, set A∗ = A∗ ∪ {A}.
2.4 P∗ = P∗ ∪ Q∗.

3 Return A∗.

Remark 25. In the following, we will analyze the complexity of Algorithm MFTriSet. Basically, we
will show that the size of the polynomials in bounded by the size of the input polynomials and the
worst case complexity of this algorithm is roughly O(nd). The second result implies that for a fixed d,
say d = 2, Algorithm MFTriSet is a polynomial time algorithm. Note that solving quadratic Boolean
equations is NP complete. In Algorithm MFCS, the number branches could be exponential. We will
discuss how to control the number of branches in Section 6.

5.2. Bitsize bounds of the polynomials inMFTriSet

In order to estimate the size of the polynomials, we introduce a bitsize measure for a polynomial
in R2. Let M = xi1xi2 · · · xik be a monomial. The length of M , denoted by ∥M∥, is defined to be k.
Specially, the length of 1 is defined as 1. For a polynomial P = M1+· · ·+Mt whereMi aremonomials,
∥P∥ =

t
i=1 ∥Mi∥ is called the length of P .

We first note that since Algorithm MFCS is multiplication free, the degrees of the polynomials
occurring in the algorithmwill be bounded by d = maxP∈P{deg(P)}. As a consequence, the size of the
polynomials occurring in the algorithmwill be bounded by O(nd). Then, the size of the polynomials is
effectively controlled if d is small. For all the examples in Section 6, we have d ≤ 4 and n ranges from
40 to 128. For such examples, the polynomials have size O(n4), while the largest possible polynomial
in n variables has size O(2n).

In the following theorem, we will further show that the size of the polynomials in Algorithm
MFTriSet are effectively controlled in all cases.
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Theorem 26. Let n be the number of variables and P the input of Algorithm MFTriSet. Then for any
polynomial T occurring in Algorithm MFTriSet, we have ∥T∥ ≤


P∈P ∥P∥. If |P| > n, then there exist n

polynomials P1, . . . , Pn in P such that ∥T∥ ≤ ∥P1∥ + ∥P2∥ + · · · + ∥Pn∥.

This result is nontrivial, because repeated additions of polynomials can increase the size of the
polynomials by an exponential factor. The proof of this result is quite complicated. Intuitively, we
want to show that a polynomial P used in early steps of the algorithmwill be ‘‘canceled" in later steps
by addition of two polynomials both containing P , that is, (P1 + P)+ (P2 + P) = P1 + P2.

In order to prove Theorem 26, we need to prove several lemmas first. Let k be an integer and P be
a polynomial. Write P = Ixk+U as a univariate polynomial in xk. We define two operators Rk and Jk
as follows:

Rk(P) = U, Jk(P) = I+1 if cls(P) = k. Rk(P) = P, Jk(P) = 0 if cls(P) < k.(17)

Then, we have the following lemma

Lemma 27. Let P and Q be polynomials with cls(P) ≤ k and cls(Q ) ≤ k. Then

(1) Rk(P + Q ) = Rk(P)+Rk(Q );
(2) Rk(P + 1) = Rk(P)+ 1;
(3) If cls(P) = cls(Q ) = k thenJk(P+Q ) = Jk(P)+Jk(Q )+1; otherwiseJk(P+Q ) = Jk(P)+Jk(Q ).

Proof. It is easy to check. �

We can define the composition of R and J naturally. Let Sj,k = {OjOj+1 . . . Ok|Oi = Ri or Ji, i =
j, . . . , k}, where 1 ≤ j ≤ k ≤ n.

Lemma 28. Let P be a polynomial with cls(P) = k. Then


Lj,i∈Sj,k
∥Lj,iP∥ ≤ ∥P∥ for any fixed j =

1, 2, . . . , k.

Proof. For a polynomial Q = Ixc + U with I ≠ 1, we have ∥Q∥ ≥ ∥I∥ + |U∥ + 1. JcQ = I + 1
and RcQ = U . Therefore, ∥JcQ∥ + ∥RcQ∥ = ∥I + 1∥ + ∥U∥ ≤ ∥I∥ + ∥U∥ + 1 ≤ ∥Q∥. If I = 1,
we have ∥JcQ∥ + ∥RcQ∥ = 0 + ∥U∥ < ∥Q∥. For i > c , we have JiQ = 0 and RiQ = Q . Then
∥JiQ∥ + ∥RiQ∥ = ∥Q∥. Hence, in any case, we have |JiQ∥ + ∥RiQ∥ ≤ ∥Q∥.

For any j, wehave


Lj,i∈Sj,k
∥Lj,iP∥ =


Lj+1,i∈Sj+1,k

(∥JjLj+1,iP∥+∥RjLj+1,iP∥) ≤


Lj+1,i∈Sj+1,k
∥Lj+1,i

P∥ ≤ · · · ≤ ∥JkP∥ + ∥RkP∥ ≤ ∥P∥. �

Proof of Theorem 26. For any k = 1, . . . , n, we assume that in the k-th round of MFTriSet we deal
with the polynomials of class k. In algorithm MFTriSet, when we compute the pseudo-remainder of
two polynomials P and Q in the k-th round, we set their initials to 1 at first, and then compute a new
polynomial RkP +RkQ . Thus, a polynomial P (k) in k-th round can be obtained in three ways:

(1) P (k) is an input polynomial;
(2) P (k)

= init(Q (k+i)) + 1 for some Q (k+i) of round k + i. It means that P (k)
= Rk+1 · · ·Rk+i−1

Jk+iQ (k+i).
(3) P (k)

= Rk+j(Q
(k+j)
1 + Q (k+j)

2 ) = Rk+1 · · ·Rk+j(Q
(k+j)
1 + Q (k+j)

2 )

= Rk+1 · · ·Rk+jQ
(k+j)
1 +Rk+1 · · ·Rk+jQ

(k+j)
2 ,

where Q (k+j)
1 and Q (k+j)

2 are polynomials of round k+ j.

In the cases 2 and 3, if i and j are bigger than 1, we still regard Rk+2 · · ·Rk+i−1Jk+iQ (k+i),
Rk+2 · · ·Rk+jQ

(k+j)
1 and Rk+2 · · ·Rk+jQ

(k+j)
2 as polynomials of round k + 1. In this way, we can

represent P (k) by operators and polynomials of round k+1.We call it the backtracking representation
of P (k). Nowwe can consider these polynomials of round k+1 and get the backtracking representation
of them. By Lemma 27, we can get a representation of P (k) by composite operators and polynomials
in round k+ 2. Then, we can do the process recursively. In the process of computing the backtracking
representation, when meet an input polynomial, we stop representing this polynomial by the ones
of higher round. At last, we backtrack to the round n, and eliminate the terms composed of the same
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operators and polynomials. Note that the polynomials of round n are all from the input. Then we
have

P (k)
=

rn
i=1


Lj∈Tn,i

LjQ
(n)
i +

rn−1
i=1


Lj∈Tn−1,i

LjQ
(n−1)
i + · · · +

rk+1
i=1


Lj∈Tk+1,i

LjQ
(k+1)
i (18)

or

P (k)
=

rn
i=1


Lj∈Tn,i

LjQ
(n)
i +

rn−1
i=1


Lj∈Tn−1,i

LjQ
(n−1)
i + · · · +

rk+1
i=1


Lj∈Tk+1,i

LjQ
(k+1)
i + 1 (19)

where Tm,i ⊆ Sk+1,m is a set of composite operators and Q (m)
i is an input polynomial with class m

(m = k + 1, . . . , n, i = 1, . . . , rm). The appearance of 1 is due to the equation (3) of Lemma 27. The
number of different polynomials in the above equation, denoted by N , is rk+1 + rk+2 + · · · + rn.

Nowwewill give an upper bound forN . It is easy to see that, whenwe backtrack to the round k+1,
there exist at most two different polynomials. Suppose that nowwe backtrack to the round k+ i, and
there are t different polynomials in the representation. Then, t1 of themare the formofRk+i+1f , where
f is a polynomial with cls(f ) < k+ i+1; t2 of them are the form of Jk+i+1g , where cls(g) = k+ i+1;
t3 of them are input polynomials. Thus, the others can be represented as Rk+i+1h+Rk+i+1hi, where
h is a fixed polynomial with cls(h) = k + i + 1 and hi is some polynomial with cls(hi) = k + i + 1.
Therefore, the number of different polynomials in the representation of round k + i + 1 is at most
2(t − t1 − t2 − t3)− (t − t1 − t2 − t3 − 1)+ t1 + t2 + t3 = t + 1. Hence, when we backtrack to the
round n, we have N ≤ n− k+ 1.

For any m = k + 1, . . . , n, i = 1, . . . , rm, since Tm,i ⊆ Sk+1,m, by Lemma 28, we have
Lj∈Tm,i

∥LjQ
(m)
i ∥ ≤


Lj∈Sk+1,m

∥LjQ
(m)
i ∥ ≤ ∥Q

(m)
i ∥.

(a) Suppose that P (k) is of form (18). We have ∥P (k)
∥ ≤

n
m=k+1

rm
i=1 ∥Q

(m)
i ∥where rk+1+· · ·+ rn ≤

n− k+ 1 ≤ n.
(b) Suppose the representation of P (k) is Eq. (19). It is easy to see that there exists a term of the form

Rk+1 · · ·Rk+i−1Jk+iLQ (k+j), where Q (k+j) is an input polynomial with class k + j, L ∈ Sk+i+1,k+j

and cls(LQ (k+j)) = k + i. If init(LQ (k+j)) = W + 1 where W is a polynomial without a constant
term, we have Jk+iLQ (k+j)

= W . Therefore ∥Jk+iLQ (k+j)
∥ + ∥Rk+iLQ (k+j)

∥ < ∥LQ (k+j)
∥. Hence,

∥P (k)
∥ <

n
m=k+1

rm
i=1

∥Q (m)
i ∥ + 1 which means ∥P (k)

∥ ≤
n

m=k+1
rm

i=1 ∥Q
(m)
i ∥. If init(LQ

(k+j)) = W where W is a
polynomial without a constant term, we have Jk+iLQ (k+j)

= W + 1. Thus, P (k)
= Rk+1 · · ·

Rk+i−1Jk+iLQ (k+j)
+1+E = Rk+1 · · ·Rk+i−1W +E where E is the sum of other terms in Eq. (19).

Obviously, ∥Rk+1 · · ·Rk+i−1W∥ < ∥Rk+1 · · ·Rk+i−1(W + 1)∥ = ∥Rk+1 · · ·Rk+i−1Jk+iLQ (k+j)
∥.

Then we have ∥P∥ < ∥Rk+1 · · · Rk+i−1Jk+iLQ (k+j)
∥ + ∥E∥ ≤

n
m=k+1

rm
i=1 ∥Q

(m)
i ∥.

In summary,we always have ∥P (k)
∥ ≤

n
m=k+1

rm
i=1 ∥Q

(m)
i ∥where rk+1+· · ·+rn ≤ n−k+1 ≤ n. �

The following result shows that even the size of themonomials occurring in the algorithms is nicely
bounded.

Corollary 29. Let M be the set of distinct monomials which are contained in some polynomial occurring
in Algorithm MFTriSet and H =


m∈M ∥m∥. Then, we have H ≤


P∈P cls(P)∥P∥ + 1 where P is the

input of the algorithm.

Proof. From the proof of Theorem 26, a polynomial P occurring in the AlgorithmMFTriSetmust have
form (18) or (19). Then, a monomials m of P must be either 1 or contained in some LQ (k), where Q (k)

is an input polynomial with class k and L ∈ Sk−i,k. Thus, H is not bigger than the sum of the length of
all such LQ and 1. From Lemma 28,


Li2∈S2,k

∥Li2Q
(k)
∥+· · ·+


Lik∈Sk,k

∥LikQ
(k)
∥+∥Q (k)

∥ ≤ k∥Q (k)
∥.

Considering all input polynomials P and 1, we get the corollary. �
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5.3. Complexity analysis ofMFTriSet

For a polynomial set P, we define tdeg(P) to be the highest total degree of the elements in P. In this
section, we will always consider a Boolean polynomial set P with l polynomials and tdeg(P) = d.
Theorem 30. For an input polynomial set P with |P| = l and tdeg(P) = d, the bitsize complexity of
MFTriSet is O(lnd+1 

P∈P term(P)). If l ≥ n, the bitsize complexity of MFTriSet is O(lnd+2M) where
M = maxP∈P term(P).

As a consequence, Algorithm MFTriSet is a polynomial-time algorithm for a small d. For all the
examples in Section 6, we have d ≤ 4 and n ranges from 40 to 128. For such examples, the complexity
is O(n8M) since l is roughly O(n2).

We will prove Theorem 30 in the rest of this section. As in Section 5.2, we assume that in the
k-th round of MFTriSet started as step 2, we deal with the polynomials of class k, which is the worst
case. Suppose that we have lk polynomials with class k in the k-th round. Since the complexity of
computing I+1 is smaller than that of doing the polynomial additions, we only consider the addition
of two polynomials. Thenwe need to do lk−1 polynomial additions in order to eliminate xk. Thus, if we
can estimate the number of the polynomials in P in every round, then we can obtain the complexity
bound of MFTriSet. Note that, in Step 2.5 of MFTriSet, we choose a Q with the lowest degree, which
is important for the complexity analysis.

Suppose that we have a polynomial set S = {P1, . . . , Pl}with class n, which is the worst case. After
eliminating xn, we obtain two sets of polynomials:

SJ = {JnP|P ∈ S}, SR = {Rn(Ps + P)|P ∈ S}

where Ps is a fixed polynomial with lowest degree in S and {Jn,Rn} are the operators defined in (17).
Note that tdeg(SJ) ≤ d− 1 and tdeg(SR) ≤ d. Moreover, |SJ | ≤ l and |SR| ≤ l. After eliminating xn−1,
we have four polynomial sets:

SJJ = {Jn−1P|P ∈ SJ}, SJR = {Jn−1P|P ∈ SR},

SRJ = {Rn−1(Ps + P)|P ∈ SJ}, SRR = {Rn−1(Ps + P)|P ∈ SR}.

Similarly, |SJJ |, |SRJ | ≤ |SJ | ≤ l and |SJR|, |SRR| ≤ |SR| ≤ l. Since Ps is a polynomial with the lowest de-
gree, we have tdeg(Rn−1(Ps+P)) ≤ tdeg(P)whichmeans that tdeg(SRR) ≤ tdeg(SR) and tdeg(SRJ) ≤
tdeg(SJ). For the other two sets, we can conclude tdeg(SJJ) ≤ tdeg(SJ) − 1 ≤ d − 2 and tdeg(SJR) ≤
tdeg(SR)− 1 ≤ d− 1.

Recursively, we have the following sequence
(S)→ (SJ , SR)→ (SJJ , SJR, SRR, SRJ)→ · · · . (20)

For a set SO1O2···Ok whereOi is J or R, we have |SO1O2···Ok | ≤ l.We can deduce that tdeg(SO1O2···Ok) ≤ d−s
where s is the number of Oi which is J . Therefore, the number of J occurring in the subscript of S can be
d− 1 at most. As a consequence, in round n− k corresponding to the (k+ 1)-th part of the sequence
(20), the number of Si is at most (k0) + (k1) + · · · + ( k

d−1). Thus, the number of polynomials in round
n−k is atmost l(

d−1
i=0 (ki )). It implies thatweneed atmost l(

n−1
k=0

d−1
i=0 (ki )) = l(

d
i=1(

n
i ))polynomial

additions in the algorithm. It is easy to prove that in other simpler cases, the times of additions are
still bounded by l(

d
i=1(

n
i )) or O(lnd).

Now let us estimate the complexity of polynomial additions inMFTriSet.We candefine an operator
Ik as follows: if cls(P) = k, Ik(P) = init(P); if cls(P) < k, Ik(P) = 0. It is easy to prove that
if we substitute Ji with Ii in Eqs. (18) and (19) of Section 5.2, any of the two equations will either
be unchanged or become itself plus one. Now we use term(P) to denote the number of monomials
occurring in P . Then we have term(IP) + term(RP) ≤ term(P). Similar to the proof of Theorem 26,
we can prove the following lemma
Lemma 31. Let n be the number of variables and P the input of Algorithm MFTriSet. Then, for any
polynomial T occurring in MFTriSet, we have term(T ) ≤


P∈P term(P) + 1. If |P| > n, then there

exist n polynomials P1, . . . , Pn in P such that term(T ) ≤ term(P1)+ term(P2)+ · · · + term(Pn)+ 1.
Note that the bitsize complexity of computing the sum of P1 and P2 is O(n(term(P1)+ term(P2))).

Then the complexity of AlgorithmMFTriSet is O(lnd+1(


P∈P term(P))). We have proved Theorem 30.
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Table 1
Timings for Boolean matrix multiplica-
tion problems.

n = 4 n = 5 n = 6

MFCS 0.11 41 196,440
GB 2363 • •

6. Experimental results

We have implemented algorithms TDCS andMFCS in R2 with the C language and tested themwith
a large number of polynomial systems. In order to save storage space, we use the SZDD to store the
polynomials in our implementation (Minto, 1993).

For comparison, we also use the Gröbner basis algorithm (F4) in Magma with Degree Reverse
Lexicographic order, denoted by GB, to solve these polynomial systems. The experiments are done
on a PCwith a 3.19GHz CPU, 2Gmemory, and a Linux OS. The running times in the tables are all given
in seconds.

6.1. Boolean matrix multiplication problem

For two n× n Boolean matrices A and B, if AB = I , by the linear algebra we can deduce that BA = I ,
where I is the n× n identity matrix. However, if we want to check the conclusion by reasoning, it will
become an extremely difficult problem. This challenge problemwas proposed by Stephen Cook in his
invited talk at SAT 2004 (Cook, 2004; Cook and Nguyen, 2010). The best known result was that the
problem of n = 5 can be solved by SAT-solvers in about 800–2000 s. The problem of n = 6 were still
unsolved (Biere, 2008).

Nowwe test our software for this problem by converting the problem into the solving of a Boolean
polynomial system. By setting the entries of A and B to be 2n2 distinct variables, we can obtain n2

quadratic polynomials from AB = I . Then we compute the Gröbner basis or the zero decomposition
of this polynomials, and check whether the polynomials generated by BA = I can be reduced to 0 by
the Gröbner basis or by every characteristic set in the zero decomposition. In this way, we can prove
the conclusion.

We use the CS method to illustrate the above procedure. Let P1 and P2 be the polynomial sets
generated by AB = I and BA = I respectively. With the CS method, we have

Zeroq(P1) = ∪iZeroq(Ai)

where Ai are triangular sets. If prem(P, Ai) = 0 for all possible i and P ∈ P2, then we have solved the
problem. It is clear that the major difficulty here is to compute the decomposition.

For n = 4, 5, 6, the numbers of variables are 32, 50, 72 respectively. Therefore, computing the
Gröbner basis or the zero decomposition of this polynomials will be a hard work. We used GB and our
MFCS algorithm to solve the problem with n = 4, 5, 6. The running time given in Table 1 includes
solving the equations generated by AB = I and checking the conclusion BA = I . Notation • means
memory overflow.

6.2. Equations from stream ciphers based on nonlinear filter generators

In this section we generate our equations from stream ciphers based on LFSRs. We first show
how these polynomial systems are generated. A linear feedback shift register (LFSR) of length L
can be simply considered as a sequence of L numbers (c1, c2, . . . , cL) from F2 such that cL ≠ 0
(Menezes et al., 1996). For an initial state S0 = (s0, s1, . . . , sL−1) ∈ FL

2, we can use the given LFSR
to produce an infinite sequence satisfying

si = c1si−1 + c2si−2 + · · · + cLsi−L, i = L, L+ 1, . . . . (21)
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A key property of an LFSR is that if the related feedback polynomial P(x) = cLxL + cL−1xL−1 + · · · +
c1x − 1 is primitive, then the sequence (21) has period 2L

− 1 (Menezes et al., 1996). The number of
nonzero coefficients in P is called theweight of P , denoted by wP .

An often used technique in stream ciphers to enhance the security of an LFSR is to add a nonlinear
filter to the LFSR. Let f (x1, . . . , xm) be a Boolean polynomial withm variables. We assume thatm ≤ L.
Then we can use f and the sequence (21) to generate a new sequence as follows

zt = f (st+k1 , st+k2 . . . , st+km), t = 0, 1, . . . (22)

where {ki}1≤i≤m is called the tapping sequence. A combination of an LFSR and a nonlinear polynomial
f is called a nonlinear filter generator (NFG).

The filter functions used in this paper are due to Canteaut and Filiol (2001):

• Canfil 1, x1x2x3 + x1x4 + x2x5 + x3
• Canfil 2, x1x2x3 + x1x2x4 + x1x2x5 + x1x4 + x2x5 + x3 + x4 + x5
• Canfil 3, x2x3x4x5 + x1x2x3 + x2x4 + x3x5 + x4 + x5
• Canfil 4, x1x2x3 + x1x4x5 + x2x3 + x1
• Canfil 5, x2x3x4x5 + x2x3 + x1
• Canfil 6, x1x2x3x5 + x2x3 + x4
• Canfil 7, x1x2x3 + x2x3x4 + x2x3x5 + x1 + x2 + x3
• Canfil 8, x1x2x3 + x2x3x6 + x1x2 + x3x4 + x5x6 + x4 + x5
• Canfil 9, x2x4x5x7+ x2x5x6x7+ x3x4x6x7+ x1x2x4x7+ x1x3x4x7+ x1x3x6x7+ x1x4x5x7+ x1x2x5x7+

x1x2x6x7 + x1x4x6x7 + x3x4x5x7 + x2x4x6x7 + x3x5x6x7 + x1x3x5x7 + x1x2x3x7 + x3x4x5 + x3x4x7 +
x3x6x7 + x5x6x7 + x2x6x7 + x1x4x6 + x1x5x7 + x2x4x5 + x2x3x7 + x1x2x7 + x1x4x5 + x6x7 + x4x6 +
x4x7 + x5x7 + x2x5 + x3x4 + x3x5 + x1x4 + x2x7 + x6 + x5 + x2 + x1
• Canfil 10, x1x2x3 + x2x3x4 + x2x3x5 + x6x7 + x3 + x2 + x1.

In the experiments, we use our algorithms to find S0 = (s0, s1, . . . , sL−1) by solving the following
equations for given ci, zi, and f

zt = f (st+k1 , st+k2 . . . , st+km), t = 0, 1, . . . , k (23)

where k is a positive integer, si satisfy (21), and {k1, . . . , km} is a tapping sequence.
We compare four different algorithms for solving these equations. Two of them are the MFCS and

GB. Faugère and Perret suggested to us that an incremental version of the Gröbner basis algorithm is
faster than GB for the equations generated by the LFSR. Therefore, we also compare the incremental
Gröbner basis algorithm and the incremental TDCS, denoted IGB and ITDCS respectively. Note that
the F5method (Faugère, 2002) and the CSmethod presented in (Maza, 2000) also use the incremental
technique.

Let HS be the field polynomials {x21 + x1, . . . , x2n + xn} and PS = {P1, P2, . . . , Pk} be the input
polynomials with Pi be the polynomial generated from the i-th output bit. Then we compute the IGB
by the following codes in Magma:

R⟨x1, . . . ,xn⟩ :=PolynomialRing(GF(2),n,‘‘grevlex’’);
HS:=[R.i∧2+R.i: i in [1..Rank(R)]]; G:=HS;
for i:=1 to k do
G:=G cat [PS.i]; G:= GroebnerBasis(G);
end for;
G.
Wedid three sets of experimentswith increasing difficulties. The test problems are similar to those

in (Chai et al., 2008) but are more difficult. We also compare our method with one of the benchmark
implementations of the Gröbner basis method on the same computer, which are not given in
(Chai et al., 2008).

In the first set of experiments, we choose a simple tapping sequence {0, 1, 2, 3, 4, 5, 6} and the
feedback polynomials for L = 40, 60, 81, 100, 128 are respectively x40+x21+x19+x2+1, x60+x1+1,
x81 + x4 + 1, x100 + x37 + 1, x128 + x29 + x27 + x2 + 1. The results are given in Table 2, where L is the
number of variables, k is the number of equations (see (23)). k is the smallest number such that the
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Table 2
Examples with simple feedback polynomials and tapping sequences.

Filters L(wf ) = 40 (5) 60 (3) 81 (3) 100 (3) 128 (5)

MFCS 0.10 0.02 0.07 0.37 0.49
ITDCS 0.10 0.04 0.05 0.21 0.37

Canfil1 IGB 0.42 0.99 2.29 3.26 8.32
GB 0.91 0.43 8.12 3.61 1997.2
k 52 114 154 140 230

MFCS 0.17 0.03 0.07 0.59 1.11
ITDCS 0.04 0.02 0.06 0.19 0.53

Canfil2 IGB 0.43 0.65 1.61 3.17 7.13
GB 0.92 30.65 0.02 55.09 •

k 44 72 138 140 217

MFCS 0.17 0.03 0.07 0.59 1.11
ITDCS 0.14 0.03 0.23 1.10 0.72

Canfil3 IGB 0.16 0.96 2.51 6.04 16.08
GB 178.57 1.68 • • •

k 64 114 162 120 128

MFCS 0.09 0.05 0.07 0.83 2.70
ITDCS 0.14 0.09 0.09 2.91 2.01

Canfil4 IGB 0.17 0.89 1.99 2.13 10.26
GB 0.65 2.24 0.39 • •

k 60 168 154 150 180

MFCS 0.03 0.01 0.03 0.08 0.12
ITDCS 0.04 0.05 0.11 0.18 0.59

Canfil5 IGB 0.14 0.37 0.80 1.59 3.46
GB 0.10 0.06 0.10 0.50 0.85
k 40 60 81 100 128

MFCS 0.05 0.04 0.08 0.11 0.35
ITDCS 0.09 0.04 0.10 0.29 1.07

Canfil6 IGB 0.08 0.35 0.80 1.70 5.28
GB 0.24 0.09 0.01 0.65 •

k 52 108 146 160 230

MFCS 0.05 0.02 0.08 0.38 0.70
ITDCS 0.03 0.03 0.08 0.24 0.42

Canfil7 IGB 0.10 0.81 1.86 3.32 9.78
GB 0.27 0.40 0.01 831.89 •

k 40 120 154 150 218

MFCS 0.32 0.08 0.21 0.61 1.31
ITDCS 0.09 0.06 0.14 0.25 0.66

Canfil8 IGB 0.13 0.30 1.26 2.09 6.11
GB 0.88 0.56 92.51 20.03 •

k 44 60 154 140 218

MFCS 2.94 0.30 0.64 0.79 15.31
ITDCS 0.45 0.06 0.24 1.22 1.28

Canfil9 IGB 4.39 5.13 13.15 17.78 47.62
GB • 90.49 • • •

k 48 102 113 110 218

MFCS 0.39 0.06 0.12 1.40 3.43
ITDCS 0.12 0.04 0.12 0.57 0.49

Canfil10 IGB 4.48 28.16 50.87 63.63 100.39
GB 28.72 2.21 492.16 • •

k 44 90 122 140 205

system has a unique solution, wP is the weight of the feedback polynomial P , and • means memory
overflow.



676 X.-S. Gao, Z. Huang / Journal of Symbolic Computation 47 (2012) 655–679

Table 3
Examples with larger feedback polynomials.

Filter ITDCS MFCS IGB GB

Canfil1 0.78 2.44 0.89 55.73
Canfil2 0.47 2.17 0.66 49.33
Canfil3 1.01 8.10 3.16 •

Canfil4 0.99 2.24 0.62 26.10
Canfil5 0.58 2.80 3.00 •

Canfil6 0.58 2.14 2.81 •

Canfil7 0.16 0.35 0.27 16.64
Canfil8 0.26 5.81 0.34 33.35
Canfil9 6.83 75.62 8.54 •

Canfil10 0.70 3.04 4.87 •

Table 4
Examples with larger feedback polynomials
and nontrivial tapping sequences.

Filter MFCS ITDCS IGB

Canfil1 109.91 * • after 10m
Canfil2 160.98 * • after 8m
Canfil3 149.05 * • after 28m
Canfil4 11.19 * • after 60m
Canfil5 23.98 * • after 4m
Canfil6 107.39 * • after 6m
Canfil7 13.95 * • after 37m
Canfil8 855.04 * • after 60m

In the second set of experiments, we generate more difficult equations in the cases of L = 40 and
k = 60 by changing the feedback polynomial to x40+x35+x32+x27+x24+x19+x15+x12+x7+x1+1.
The results are given in Table 3.

In the third set of experiments, we generate more dense polynomial systems by changing the
tapping sequence. The results are given in Table 4, in which L = 40, k = 55, the feedback polynomial
is x40 + x37 + x34 + x21 + x11 + x5 + 1 and the tapping sequence is {0, 6, 11, 18, 25, 31, 37}. And ∗
means that we have computed over 2 h and did not obtain the solutions.

From the experiments, we have the following observations.

• From Table 2, we can see that for these ‘‘simple’’ examples, ITDCS is the fastest method. IGB and
MFCS are also very efficient with MFCS better than IGB in most cases. GB tends to generate large
polynomials and causes memory overflow.
• From Table 3, we can see that for these ‘‘moderately difficult" polynomial systems, ITDCS is still

the fastest method. Now, IGB performs better thanMFCS.
• From Table 4, we can see that for the ‘‘most difficult" polynomial systems, MFCS is the only

algorithm that can find the solutions on our computer. IGB and GB quickly use all the memory
and cause memory overflow. ITDCS has been run for two hours without giving a result. The reason
is that, in this case, ITDCS and IGB need to deal with some high degree and dense polynomials.
On the other hand, due to Theorems 26 and 30, the polynomials occurring in Algorithm MFCS are
much smaller.

In summary, AlgorithmMFCS seems to be themost efficient and stable approach to deal with these
kinds of polynomial systems. The main reason is that the size of the polynomials in this algorithm is
effectively controlled due to Theorems 26 and 30. To use SZDD (Minto, 1993) to represent polynomials
is another key factor in memory saving. Note that SZDD suits the CS method very well. The CS
method will generate a large number of components and the polynomial sets representing different
components differ only for a very few number of polynomials due to the way of generating new
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Table 5
The number of components for the examples in Table 4.

Canfil1 Canfil2 Canfil3 Canfil4 Canfil5 Canfil6 Canfil7 Canfil8

NC 13749 23881 7251 1657 1086 3331 1551 180710
R ≈ 2−26 2−25 2−27 2−29 2−30 2−28 2−29 2−24

components (see Step 2.6.3 of Algorithm 1). Then different polynomial sets will share memory for
their common polynomials, and as a consequence, the total memory consumption is well contained.

For AlgorithmMFCS, the bottle neck problem is how to control the number of components (that is,
the number of polynomial sets in P∗ in the output of AlgorithmMFTriSet). Theoretically, this number
is exponential in the worst case. Practically, this number could also be very large. But, comparing to
the number 2L of exhaust search, the number of components generated inMFTriSet is still very small.
In Table 5, we give the numbers of components for each example in Table 4. In this table, NC is the
number of components and R = NC

2L
could be considered as a measure of effectiveness of Algorithm

MFTriSet. We can see that R is very small for all examples.

6.3. Attack on Bivium-A

Bivium is a simple version of the eSTREAM (2005) stream cipher candidate Trivium. It is built on
the same design principles of Trivium. The intention is to reduce the complexity of Trivum, and to
extend the attacks on Bivium to Trivium. Bivium has two versions Bivium-A and Bivium-B. Here we
focus on attacking Bivium-A. There have been several successful attacks on Bivium-A, and wewant to
show that our algorithm is comparable with these algorithms.

The Bivium-A is given by the following pseudo-code:
for i = 1 to N do
t1 ← s66 + s93
t2 ← s162 + s177
zi ← t2
t1 ← t1 + s91 · s92 + s171
t2 ← t2 + s175 · s176 + s69

(s1, s2, . . . , s93) ← (t2, s1, . . . , s92)
(s94, s95, . . . , s177) ← (t1, s94, . . . , s176).

We want to recover the initial state (s1, . . . , s177) from the given N output bits (z1, . . . , zN). Note that
the degree of the equations will increase after several clocks. In order to avoid this problem, we can
introduce two new variables and two equations for each clock:

s178 = s66 + s93 + s91 · s92 + s171 (24)
s179 = s162 + s177 + s175 · s176 + s69. (25)

Then we can obtain a Boolean polynomial system with 2N + 177 variables and 3N equations.
The results of the successful attacks on Bivium-A (Mcdonald et al., 2007; Raddum, 2006; Simonetti

et al., 2008)1 is given in Table 6.
In our experiments,weuse the algorithmMFCS and the equations are generatedby adding twonew

variables for each clock.We runMFCS on a sample of 100 different random initial states.We observed
that the different initial keys make a great difference to the results. For every initial state, we can find
a numberM . When the number of output bits N is not less thanM , the equations can be solved within
one minute. When N becomes much bigger, the running time will increase slowly. However, if N is
less thanM , the running time will be much longer than one minute. From our experiment results, the
value ofM is from 200 to 700. In our experiments, we set N = 700.

1 In (Simonetti et al., 2008), they give four different results by solving in different ways. Here we only list the result by adding
new variables but without guessing any variables.
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Table 6
The known results for Bivium-A.

Method Graph for sparse system SatSolver Gröbner Basis

Time ‘‘about a day" 21 sec 400 sec

Output Bits 177 177 2000

The average time for solving the problem by MFCS with 700 output bits is 49.3 s. We also tried to
use GB to solve the same sample by the same computer. The equations are also generated by adding
two variables for each clock. In order to solve the equations, we need 1700 output bits. If the output
is less than 1700 bits, the memory will be exhausted. For N = 1700, the average time for solving the
problem by GB is 303.3 s. If we set N = 2000 as in (Simonetti et al., 2008), the average time is 521.6
seconds. From the results, we can see that our algorithm is comparable with the known successful
algorithms in this problem.

7. Conclusions

In this paper, we present two algorithms TDCS and MFCS to solve nonlinear equation systems in
finite fields based on the idea of characteristic set. Due to the special property of finite fields, the
given algorithms have better properties than the general characteristic set method. In particular, we
obtain an explicit formula for the number of solutions of an equation system, and give the bitsize
complexity of Algorithm TDCS for Boolean polynomials.We also prove that the size of the polynomials
in MFCS can be effectively controlled, which allows us to avoid the expression swell problem
effectively.

We test our methods by solving polynomial systems generated by the Boolean matrix problem,
stream cipher Bivium-A and stream ciphers based on nonlinear filter generators. All these equations
have block triangular structure. Extensive experiments show that ourmethods are efficient for solving
this kind of equations andAlgorithmMFCS seems to be themost efficient and stable approach for these
problems.

The experiments are only done for Boolean polynomials in this paper. It our future work to see
whether the algorithms proposed in this paper can be developed into practically efficient software
packages for finite fields other than F2. It is expected that elimination techniques developed in
previous work on CS methods will also be needed.
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