
A New Method for Solving Polynomial Systems

with Noise over F2 and Its Applications in Cold
Boot Key Recovery�

Zhenyu Huang and Dongdai Lin

State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China

{huangzhenyu,ddlin}@iie.ac.cn

Abstract. The family of Max-PoSSo problems is about solving polyno-
mial systemswith noise, and is analogous to thewell-knownMax-SAT fam-
ily of problems when the ground field is F2. In this paper, we present a new
method called ISBS for solving the family ofMax-PoSSoproblems overF2 .
This method is based on the ideas of incrementally solving polynomial sys-
tem and searching the values of polynomials with backtracking. The ISBS
method can be combinedwith different algebraic methods for solving poly-
nomial systems, such as the Gröbner Basis method or the Characteristic
Set(CS) method. By combining with the CS method, we implement ISBS
and apply it in Cold Boot attacks. ACold Boot attack is a type of side chan-
nel attack in which an attacker recover cryptographic key material from
DRAMrelies on the data remanence property of DRAM.Cold Boot key re-
covery problems of block ciphers can be modeled as Max-PoSSo problems
over F2. We apply the ISBS method to solve the Cold Boot key recovery
problems of AES and Serpent, and obtain some experimental results which
are better than the existing ones.

Keywords: polynomial system with noise, Max-PoSSo, Cold Boot at-
tack, boolean equations, Characteristic Set method, AES, Serpent.

1 Introduction

Solving polynomial system with noise, which means finding an optimal solution
from a group of polynomials with noise, is a fundamental problem in several
areas of cryptography, such as algebraic attacks, side-channel attacks and the
cryptanalysis of LPN/LWE-based schemes. In computation complexity field, this
problem is also significant and called the maximum equation satisfying problem
[7,14]. In the general case, this problem is NP-hard even when the polynomials
are linear. In [1], the authors classified this kind of problems into three categories:

� This work was in part supported by National 973 Program of China under Grants No.
2013CB834203 and No. 2011CB302400, the National Natural Science Foundation of
China under Grant No. 60970152 and the ”Strategic Priority Research Program” of
the Chinese Academy of Sciences under Grant No. XDA06010701.

L.R. Knudsen and H. Wu (Eds.): SAC 2012, LNCS 7707, pp. 16–33, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Solving Polynomial Systems with Noise over F2 and Its Applications 17

Max-PoSSo, Partial Max-PoSSo, and Partial Weighted Max-PoSSo, and called
them the family of Max-PoSSo problems. Moreover, they presented a model by
which they can convert the Cold Boot key recovery problems of block ciphers
into the family of Max-PoSSo problems. The Cold Boot key recovery problems
originated from a side channel attack which is called the Cold Boot attack[8].
In a Cold Boot attack, an attacker with physical access to a computer is able
to retrieve sensitive information from a running operating system after using a
cold reboot to restart the machine from a completely “off” state. The attack
relies on the data remanence property of DRAM to retrieve memory contents
which remain readable in the seconds to minutes after power has been removed.
Furthermore, the time of retention can be potentially increased by reducing the
temperature of memory. Thus, data in memory can be used to recover potentially
sensitive information, such as cryptographic keys. Due to the nature of the Cold
Boot attack, it is realistic to assume that only decayed image of the data in
memory can be available to the attacker, which means a fraction of memory bits
will be flipped. Therefore, the most important step of the Cold Boot attack is
recovering the original sensitive information from the decayed data.

In the case of block cipher, the sensitive information is the original key, and
the decayed data is likely to be the round keys, which are generated from the
origin key by the key schedule operation. Thus the Cold Boot key recovery
problem of block cipher is recovering the origin key from the decayed round
keys. Intuitively, every bit of round keys corresponds to a boolean polynomial
equation with the bits of origin key as its variables. Then all bits of these round
keys correspond to a boolean polynomial system. However, because of the data
decay this polynomial system has some noise. In general case, these polynomials
can be seen as random ones, so a random assignment may satisfy about half of
them. If the percentage of the decayed bits is smaller than 50%, an assignment
satisfying the maximum number of these polynomials may be equal to the origin
key with high probability. By this way, we can model the Cold Boot key recovery
problem of block cipher as the Max-PoSSo problem over F2, which is finding the
optimal solution of a polynomial system with noise.

As mentioned before, the general Max-PoSSo problem over F2 is NP-hard.
A natural way of solving Max-PoSSo problems over F2 is converting them into
their SAT equivalents and then solve them by Max-SAT solvers. However, this
method has a disadvantages that the original algebraic structure is destroyed. In
[1], the authors converted the Max-PoSSo problems over F2 into mixed integer
programming problems, and used the MIP solver SCIP to solve them. They
presented some experimental results about attacking AES and Serpent. Their
attack result about Serpent is a new result, and they showed that comparing
with generic combinatorial approach their attack is much better.

The main contribution of this paper is that we propose a new method
called ISBS for solving the family of Max-PoSSo problems over F2. The
basic idea of ISBS is searching the values of polynomials. Precisely speak-
ing, given a polynomials system with noise {f1, f2, . . . , fm}, we try to solve
polynomial systems {f1 + e2, f2 + e2, . . . , fm + em}, where {e1, e2, . . . , em}



18 Z. Huang and D. Lin

can be equal to {0, 0, . . . , 0}, {1, 0, . . . , 0}, . . . , {1, 1, . . . , 1}. The solution of a
{f1+e2, f2+e2, . . . , fm+em} with {e1, e2, . . . , em} having the smallest Hamming-
weight is the solution of the Max-PoSSo problem.

In the ISBS method, we combine the above idea with the ideas of incremen-
tally solving {f1 + e1, f2 + e2, . . . , fm + em} and searching {e1, e2, . . . , em} with
backtracking. By this way, we can cut off a lot of branches when searching the
values of {e1, e2, . . . , em}. Furthermore, with the incremental solving method,
we can use the former results to derive the latter ones, by which we can reduce
a lot of computation.

In order to further improve the efficiency of ISBS, we combine it with an
algebraic method for solving polynomial system which is called the Characteris-
tic Set(CS) Method. In the field of symbolic computation, the CS method is an
important tool for studying polynomial, algebraic differential, and algebraic dif-
ference equation systems. Its idea is reducing equation systems in general form to
equation systems in the form of triangular sets. This method was introduced by
Ritt and the recent study of it was inspired by Wu’s seminal work on automated
geometry theorem proving [13]. In [2], the CS method was firstly extended to
solve polynomial equations in boolean ring. In [6], it was further extended to
solve polynomial equations in general finite fields, and an efficient variant of
the CS method called the MFCS algorithm was proposed and systematically
analyzed. MFCS is an algorithm for solving boolean polynomial system, and it
already had some applications in cryptanalysis[9]. MFCS has some advantage
in incrementally solving polynomial system, thus we implemented ISBS with
the MFCS algorithm.

Furthermore, we used ISBS to solve some Cold Boot key recovery problems of
AES and Serpent, and compared our experimental results with those in [1]. From
these results, we showed that by solving these problems with ISBS the success
rate of recovering the origin key is higher and the average running time is shorter.

The rest of this paper is organized as follows. In Section 2, we introduce the
family of Max-PoSSo problems and its relation with Cold Boot key recovery.
In Section 3, we present the ISBS method and simply introduce the MFCS
algorithm. In Section 4, our experimental results of attacking AES and Serpent
are shown. In Section 5, the conclusions are presented. In Appendix, we present
some tricks we used in solving the symmetric noise problems.

2 The Family of Max-PoSSo Problems and the Cold
Boot Problem

In this section we will introduce the family of Max-PoSSo problems and its
relationship with the Cold Boot key recovery problem.

2.1 The Family of Max-PoSSo Problems

Let F be a field, and P = {f1, . . . , fm} ⊂ F[x1, . . . , xn] is a polynomial sys-
tem. The polynomial system solving (PoSSo) problem is finding a solution
(x1, . . . , xn) ∈ F

n such that ∀fi ∈ P, we have fi(x1, . . . , xn) = 0.



Solving Polynomial Systems with Noise over F2 and Its Applications 19

By Max-PoSSo, we mean the problem of finding any (x1, . . . , xn) ∈ F
n that

satisfies the maximum number of polynomials in P. The name “Max-PoSSo”
was first proposed in [1]. In the computational complexity field, this problem is
sometimes called the maximum equation satisfying problem [7,14]. Obviously,
Max-PoSSo is at least as hard as PoSSo. Moreover, whether the polynomials in
P are linear or not, Max-PoSSo is a NP-hard problem.

Besides Max-PoSSo, in [1], the authors introduced another two similar prob-
lems: Partial Max-PoSSo and Partial Weighted Max-PoSSo.

Partial Max-PoSSo problem is finding a point (x1, . . . , xn) ∈ F
n such that

for two sets of polynomials H,S ∈ F[x1, . . . , xn], we have f(x1, . . . , xn) = 0 for
all f ∈ H, and the number of polynomials f ∈ S with f(x1, . . . , xn) = 0 is
maximised. It is easy to see that Max-PoSSo is a special case of Partial Max-
PoSSo when H = ∅.

LetH,S are two polynomial sets in F[x1, . . . , xn]. C : S×F
n → R≥0, (f, x) → v

is a cost function. v = 0 if f(x) = 0 and v > 0 if f(x) �= 0. Partial Weighted Max-
PoSSo denotes the problem of finding a point (x1, . . . , xn) ∈ F

n such that ∀f ∈ H
we have f(x) = 0 and

∑
f∈S C(f, x) is minimised. Obviously, Partial Max-PoSSo

is Partial Weighted Max-PoSSo when C(f, x) = 1 if f(x) �= 0 for all f .
In the definition of the above four problems, the ground field F can be any

field. However, in the following of this paper, we focus on the case of F = F2,
where F2 is the finite field with elements 0 and 1, and this is the most common
case in cryptanalysis.

2.2 Cold Boot Key Recovery as Max-PoSSo

The Cold Boot key recovery problem was first proposed and discussed in the
seminal work of [8]. In [1], the authors built a new mathematical model for Cold
Boot key recovery problem of block cipher, by which they can convert the Cold
Boot problem into the Partial Weighted Max-PoSSo problem. In the following,
we extract the definition of this model from [1].

First, according to [8], we should know that bit decay in DRAM is usually
asymmetric: bit flips 0 → 1 and 1 → 0 occur with different probabilities, de-
pending on the “ground state”. The Cold Boot problem of block cipher can be
defined as follows.

Consider an efficiently computable vectorial Boolean function KS : Fn
2 → F

N
2

where N > n, and two real numbers 0 ≤ δ0, δ1 ≤ 1. Let K = KS(k) be the
image for some k ∈ F

n
2 , and Ki be the i-th bit of K. Given K, we compute K ′ =

(K ′
0,K

′
1, . . . ,K

′
N−1) ∈ F

N
2 according to the following probability distribution:

Pr[K ′
i = 0|Ki = 0] = 1− δ1, P r[K ′

i = 1|Ki = 0] = δ1,

P r[K ′
i = 1|Ki = 1] = 1− δ0, P r[K ′

i = 0|Ki = 1] = δ0.

Then we can consider such a K ′ as a noisy output of KS for some k ∈ F
n
2 , with

the probability of a bit 1 in K flipping to 0 is δ0 and the probability of a bit 0 in
K flipping to 1 is δ1. It follows that a bit K ′

i = 0 of K ′ is correct with probability



20 Z. Huang and D. Lin

Pr[Ki = 0|Ki = 0] =
Pr[K ′

i = 0|Ki = 0]Pr[Ki = 0]

Pr[K ′
i = 0]

=
(1− δ1)

(1− δ1 + δ0)
.

Likewise, a bit K ′
i = 1 of K ′ is correct with probability (1−δ0)

(1−δ0+δ1)
. We denote

these values byΔ0 andΔ1 respectively. Now assume we are given a description of
the function KS and a vector K ′ ∈ F

N
2 obtained by the process described above.

Furthermore, we are also given a control function E : Fn
2 → {True, False} which

returns True or False for a candidate k. The task is to recover k such that E(k)
returns True. For example, E could use the encryption of some known data to
check whether k is the original key. In the context of this work, we can consider
the function KS as the key schedule operation of a block cipher with n-bit keys.
The vector K is the result of the key schedule expansion for a key k, and the
noisy vector K ′ is obtained from K due to the process of memory bit decay.

We can consider the Cold Boot Problem as a Partial Weighted Max-PoSSo
problem over F2. Let FK be an equation system corresponding to KS such that
the only pairs (k,K) that satisfy FK are any k ∈ F

n
2 and K = KS(k). In our

task however, we need to consider FK with k and K ′. Assume that for each
noisy output bit K ′

i there is some fi ∈ FK of the form gi +K ′
i where gi is some

polynomial. Furthermore assume that these are the only polynomials involving
the output bits (FK can always be brought into this form) and denote the set
of these polynomials by S. Denote the set of all remaining polynomials in FK as
H, and define the cost function C as a function which returns

1

1−Δ0
, for K′

i = 0, f(x) �= 0;
1

1−Δ1
, for K′

i = 1, f(x) �= 0; 0, otherwise.

This cost function returns a cost proportional to the inverse of the probability
that a given value is correct. Finally, let FE be an equation system that is only
satisfiable for k ∈ F

n
2 for which E returns True. This will usually be an equation

system for one or more encryptions. Add the polynomials in FE to H.2 Then
H, S, C define a Partial Weighted Max-PoSSo problem. Any optimal solution x
to this problem is a candidate solution for the Cold Boot problem.

3 A New Method for Solving Max-PoSSo Problems

3.1 The Incremental Solving and Backtracking Search (ISBS)
Method

In this part, we will introduce the ISBS method for solving the family of Max-
PoSSo problems. First, let’s show our idea. Almost all existing algorithms for
solving Max-PoSSo problems are based on the idea of searching the values of

2 Actually, in our following attacks on AES and Serpent, we didn’t add FE into H.
The reason is in our method we need to solve H first, and if FE is added solving H
will be extremely inefficient.



Solving Polynomial Systems with Noise over F2 and Its Applications 21

variables, such as the Max-SAT solvers. Our idea is based on another direction
which is searching the values of polynomials. Now let’s show it specifically.

Given a noisy polynomial set P = {f1, f2, . . . , fm}. For every vector E =
[e1, e2, . . . , em] ∈ F

n
2 , we can solve the polynomial system {f1+e1, f2+e2, . . . , fn+

em} by an algebraic method. We can exhaustively searching E in the order of
increasing Hamming weight and solve the corresponding polynomial system for
each E. If the corresponding equation set of some E have a solution, then it is
the solution of the Max-PoSSo problem.

To improve the solving and searching efficiencies, we combine the incremental
solving method and backtracking search method with the above idea. For a poly-
nomial set P, we can solve it by some algebraic method, such as the Characteristic
Set(CS) method [2,6] or the Gröbner Basis method [4,5]. We denote the output
results of such a solving algorithm with input P by Result(P). From Result(P),
we can deriver all the solutions of P easily. We remind the reader that, for differ-
ent methods, Result(P) can be different. For example, if we use the CS method
to solve P, Result(P) = ∪iAi is a group of triangular sets(A triangular set Ai

is a polynomial set which can be easily solved, and its precise definition will be
given in next section). If we use the Gröbner Basis method to solve P, Result(P)
is the Gröbner Basis of idea < P >. When this polynomial system has no solu-
tion, we set Result(P) = {1}. Obviously, given Result(P) and a polynomial g, we
can achieve Result({Result(P), g}). For example, for the CS method, we need
to compute each Result(Ai, g) and return the union of them. For the Gröbner
Basis method, we need to compute the Gröbner Basis of idea generated by the
new polynomial set. Therefore, given a polynomial system P = {f1, f2, . . . , fm},
we can get Result(P) by computing Result({f1}),Result({Result({f1}), f2}), . . ..
This is the incremental solving method.

In the ISBSmethod, first we try to incrementally solve {f1+e1, f2+e2, . . . , fi+
ei} for i from 1 to m with each ei = 0. If Result({f1+e1, f2+e2, . . . , fi+ei}) = 1
for some ei, we flip ei to 1 and solve this new {f1 + e1, f2 + e2, . . . , fi + ei}. At
last, we will obtain a candidate Result({f1 + e1, f2 + e2, . . . , fm + em}) where
[e1, . . . , em] = [e′1, . . . , e

′
m]. Then, in order to obtain a better candidate, we

search all the possible values of [e1, . . . , em] with backtracking based on the value
[e′1, . . . , e

′
m]. That is we flip the value of e′i for i from m to 1, and try to incremen-

tally solve all the new systems {f1+e′1, . . . , fi+e′i+1, fi+1+ei+1, . . . , fm+em}. Fi-
nally, we will find the optimal solution after searching all the possible [e1, . . . , em].

In the following Algorithm 1, we will present the ISBS method specifically.
Here we should introduce a notation. For a polynomial set P = {f1, . . . , fm},

We use Zero(P) to denote the common zeros of the polynomials in P in the affine
space F

n
2 , that is,

Zero(P) = {(a1, · · · , an), ai ∈ F2, s.t., ∀fi ∈ P, fi(a1, · · · , an) = 0}.
Let Q = ∪iPi be the union of some polynomial sets, we define Zero(Q) to be
∪iZero(Pi).

Theorem 1. Algorithm 1 terminates and returns a solution of the Partial
Weighted Max-PoSSo problem.



22 Z. Huang and D. Lin

Algorithm 1. Incremental Solving and Backtracking Search(ISBS) al-
gorithm

Input: Two boolean polynomial sets H = {h1, h2, . . . , hr},S = {f1, f2, . . . , fm}.
A cost function C(fi, x),
where C(fi, x) = 0 if fi(x) = 0, C(fi, x) = ci if fi(x) = 1.

Output: (x1, . . . , xn) ∈ F
n
2 s.t. hi(x) = 0 for any i and

∑
fi∈S C(fi, x) is minimized.

1. Let E = [e1, e2, . . . , em] be a m-dim vector.
Solve H by an algebraic method and set Q0 = Result(H).

2. For i from 1 to m do
1.1. Set Pi = {Qi−1, fi}, solve Pi and achieve Result(Pi).
1.2. If Result(Pi) = {1}, then set Qi = Qi−1 and ei = 1.
1.3. Else, set Qi = Result(Pi), ei = 0.

3. Set S = Qm and ubound =
∑

i ciei.
Set u = ubound, k = m.

4. while k ≥ 1 do
4.1. If ek = 0 and u+ ck < ubound, then

4.1.1. Set ek = 1, u = u+ ck.
Solve Pk = {Qk−1, fk + 1} and achieve Result(Pk).

4.1.2. If Result(Pk) = {1}, then goto Step 4.2.
4.1.3. Else, Set Qk = Result(Pk).

For i from k + 1 to m do
4.1.3.1. Solve Pi = {Qi−1, fi} and achieve Result(Pi).
4.1.3.2. If Result(Pi) = {1} then Qi = Qi−1, ei = 1.

u = u+ ci. If u ≥ ubound, then set k = i, and goto Step 4.2.
4.1.3.3. Else, Qi = Result(Pi), ei = 0.

4.1.4. Set k = m, S = Qm, ubound = u.
4.2. Else, u = u− ekck, k = k − 1.

5. Get (x1, . . . , xn) from S, and return (x1, . . . , xn).

Proof: The termination of Algorithm 1 is trivial, since in this algorithm we are
searching all possible values of [e1, e2, . . . , em] with backtracking and the number
of possible values is finite. In the following, we will explain the operations of this
algorithm more specifically, from which we can show the correctness of this
algorithm.

From Step 1 to Step 3, we do the following operations recursively. For k from
0 to m− 1, We compute Result({Qk, fk+1}).
– If the result is not {1}, it means that fk+1 = 0 can be satisfied. We set ek+1 =

0 and use Qk to store the result. Then we compute Result({Qk+1, fk+2}).
– If the result is {1}, fk+1 = 0 cannot be satisfied by any point in Zero(Qk). It

implies that fk+1 = 1 holds for all these points, so we set ek+1 = 1. We set
Qk+1 = Qk , and it is also equal to Result({Qk, fk + 1}). Then we compute
Result({Qk+1, fk+2}).

After Step 3, we achieve S, and the points in Zero(S) are candidates of the
problem. For any k with ek = 0, the corresponding polynomial fk vanishes on
Zero(S). For any other fk, fk = 0 is unsatisfied by these points. Note that for



Solving Polynomial Systems with Noise over F2 and Its Applications 23

the points in Zero(S), the values of the corresponding cost functions are same.
We use ubound to store this value. Obviously, u, the value of the cost function
for a better candidate, should satisfy u < ubound.

In Step 4, we are trying to find a better candidate by backtracking to ek.
From k = m to 1, we try to flip the value of ek, and there are four cases.

1) ek = 1, and Zero({f1 + e1, . . . , fk−1 + ek−1, fk}) = ∅. We don’t flip ek, since
Zero({f1 + e1, . . . , fk−1 + ek−1, fk}) = ∅ and we can not find any candidate
from Zero({f1 + e1, . . . , fk}).

2) ek = 1, and ek has already been flipped with the same e1, . . . , ek−1. We don’t
flip ek, since we have already considered the points in Zero({f1+e1, . . . , fk}).

3) ek = 0, and u ≥ ubound, where u is the value of the cost function cor-
responding to [e1, . . . , ek−1, ek + 1]. We don’t flip ek, since the points in
Zero({f1 + e1, . . . , fk + ek + 1}) are worse than the stored candidate.

4) ek = 0, and u < ubound, where u is the value of the cost function correspond-
ing to [e1, . . . , ek−1, ek + 1]. We flip ek.

After we flipping ek to 1, we compute Result({Qk−1, fk+1}). This means that we
are trying to find better candidates from the points in Zero({f1+ e1, . . . , fk−1 +
ek−1, fk + 1}). If Result({Qk−1, fk + 1}) = {1}, it implies that {f1 + e1 =
0, . . . , fk−1+ ek−1 = 0, fk+1 = 0} is unsatisfied by any points in F

n
2 . Obviously,

we cannot find better candidates in this case. When Result({Qk−1, fk + 1}) �=
{1}, we execute Step 4.1.3.1-4.1.3.3 to incrementally solve the following polyno-
mials {fk+1, . . . , fm} as the operations in Step 1-3. In this procedure, if the value
of the cost function u corresponding to [e1, . . . , ei] is not smaller than ubound, we
have to interrupt the incrementally solving procedure, and backtrack to ei−1.
If we successfully complete the incrementally solving process, we will achieve a
better candidate Qn. Then we replace the old S by Qn and refresh the value
of ubound. After these operations, we return to Step 4 to backtrack and search
again.

From the above statement, we can know that before Step 5 we exhaustively
search all the possible values of [e1, e2, . . . , em] and solve the corresponding poly-
nomial systems {f1 + e1, f2 + e2, . . . , fm + em} in order to find the optimal can-
didate. We only cut off some branches in the following cases, and we will prove
that we cannot achieve a better candidate in these cases .

(a) We obtain {1} when incrementally solving {f1 + e1, . . . , fk−1 + ek−1, fk}. In
this case, Zero({f1 + e1, . . . , fk−1 + ek−1, fk} = ∅ and we cannot find any
solution from Zero({f1 + e1, . . . , fk−1 + ek−1, fk, fk+1 + ek+1, . . . , fm + em},
where e1, . . . , ek−1 are fixed and ek+1, . . . , em can be any values. Thus, we
cut off these branches and only consider the branches with ek = 1.

(b) In Step 4.1.3.2, u ≥ ubound. This implies that the candidates in Zero({f1 +
e1, . . . , fi−1 + ei−1, fi + 1} will not be better than the stored one. Thus, we
cut off the following branches and backtrack to ei−1.

(c) In Step 4.1.2, Result(Pk) = {1}. This means that Zero({f1 + e1, . . . , fk−1 +
ek−1, fk + 1}) = ∅. Similarly as case (a), we cut off the following branches
because we cannot find any solution from them.



24 Z. Huang and D. Lin

(d) In Step 4.1, when we want to flip ek from 0 to 1, we find u + ck ≥ ubound.
This case is similar as case (b). u+ ck ≥ ubound implies that the candidates
in Zero({f1 + e1, . . . , fk−1 + ek−1, fk + 1} will not be better than the stored
one, thus we cut off the following branches and backtrack to ek−1.

The loop of Step 4 ends when k = 0 which means that we have exhaustively
searched all possible branches except the redundant ones and the candidate we
stored is the best one among all the points in F

n
2 .

Finally, we obtain solutions from S by Step 5, and this procedure is very easy
when S is some triangular sets or a Gröbner Basis. In most time when m > n, S
has very simple structure which only contain several points. �

Remark 1. Step 4.1.1 can be changed in Algorithm 1. We only need to set ek = 1,
u = u+ ck, Qk = Qk−1 without solving {Qk−1, fk +1}. This means that we skip
the polynomial fk in the incremental solving process. Actually, if we achieve a
better candidate from the points in Zero(Qk) in the following process, all points
in this candidate must satisfy fk + 1 = 0. Suppose fk = 0 for some point in this
candidate, then we have f1 + e1 = 0, . . . , fk−1 + ek−1 = 0, fk = 0, fk+1 + ek+1 =
0, . . . , fm + em = 0 hold on this point. Since fk = 0, this point should already
be contained in a candidate of the previous process. However, this point is from
a better candidate, which means that it is better than itself and leads to a
contradiction. This proves the correctness of our modification. Intuitively, after
this modification, the algorithm will be more efficient since we don’t need to
compute Result({Qk−1, fk + 1}), but the opposite is true. From experiments
we found that this modification will reduce the efficiency of our algorithm. The
reason is that constraint fk+1 = 0 makes the point sets considered smaller which
will accelerate the following compute. More importantly, if Result(Pk) = {1} we
can cut off this backtracking branch instantly. If we consider solving Max-PoSSo
over a big finite field, this modification may have some advantage, but this is
beyond the scope of this article.

Theoretically estimating the complexity of ISBS is very difficult. The only thing
we know is that the number of paths in the whole search tree is bounded by 2m.
However, when contradictions occur in the algebraic solving process, a lot of
subtree will be cut off. Thus, in our experiments the numbers of paths are much
smaller than 2m.

3.2 The Characteristic Set Method in F2

It is easy to see that the efficiency of the algebraic solving algorithm will signif-
icantly influence the efficiency of the whole algorithm. In our implementation of
the ISBS method, we use the MFCS algorithm as the algebraic solving algo-
rithm. The MFCS algorithm is an variant of the Characteristic Set(CS) method
for solving the boolean polynomial systems, and it is efficient in the case of in-
crementally solving. In this subsection, we will simply introduce the MFCS
algorithm. More details of it can be found in [6].



Solving Polynomial Systems with Noise over F2 and Its Applications 25

For a boolean polynomial P ∈ F2[x1, x2, . . . , xn]/ < x2
1+x1, x

2
2+x2, . . . , x

2
n+

xn >, the class of P , denoted as cls(P ), is the largest index c such that xc

occurs in P . If P is a constant, we set cls(P ) to be 0. If cls(P ) = c > 0, we call
xc the leading variable of P , denoted as lvar(P ). The leading coefficient of P as
a univariate polynomial in lvar(P ) is called the initial of P , and is denoted as
init(P ).

A sequence of nonzero polynomials

A : A1, A2, . . . , Ar (1)

is a triangular set if either r = 1 and A1 = 1 or 0 < cls(A1) < · · · < cls(Ar). A
boolean polynomial P is called monic, if init(P ) = 1. Moreover, if the elements
of a triangular set are all monic, we call it a monic triangular set.

Algorithm 2. MFCS(P)

Input: A finite set of polynomials P.
Output: Monic triangular sets {A1,A2, . . . ,At} such that

Zero(P) = ∪t
i=1Zero(Ai) and Zero(Ai) ∩ Zero(Aj) = ∅

1 Set P∗ = {P}, A∗ = ∅ and C∗ = ∅.
2 While P

∗ �= ∅ do
2.1 Choose a polynomial set Q from P

∗.
2.2 While Q �= ∅ do

2.2.1 If 1 ∈ Q, Zero(Q) = ∅. Goto Step 2.1.
2.2.2 Let Q1 ⊂ Q be the polynomials with the highest class.
2.2.3 Let Qmonic = ∅, Q2 = Q \Q1.
2.2.4 While Q1 �= ∅ do

Let P = Ixc + U ∈ Q1, Q1 = Q1 \ {P}.
P1 = Qmonic ∪Q2 ∪Q1 ∪ {I, U}.
P
∗ = P

∗ ∪ {P1}.
Qmonic = Qmonic ∪ {xc + U}, Q2 = Q2 ∪ {I + 1}.

2.2.5 Let Q = xc + U be a polynomial with lowest degree in Qmonic.
2.2.6 A = A ∪ {Q}.
2.2.7 Q = Q2 ∪ {R �= 0|R = Qi +Q,Qi ∈ Qmonic}.

2.3 if A �= ∅, set A∗ = A∗ ∪ {A}.
3 Return A∗

With the MFCS algorithm, we can decompose Zero(P), the common zero set
of a polynomial set P, as ∪iZero(Ai), the union of the common zero sets of some
monic triangular sets Ai. We first convert all polynomials into monic ones by
the following decomposition formula: Zero(Ixc + U) = Zero(Ixc + U, I + 1) ∪
Zero(I, U) = Zero(xc +U, I +1)∪Zero(I, U). Note that, with decomposition we
will generate some new polynomial sets, and we call these new polynomial sets
to be new components. Then we can choose one monic polynomial xc + R to
eliminate the xc of other polynomials by doing addition xc+R+xc+R1 = R+R1.
Note that R+R1 is a polynomial with lower class. Therefore, we can obtain the



26 Z. Huang and D. Lin

following group of polynomial sets {xc + R,P′},P1, . . . ,Pt, where P
′ is a set of

polynomials with class lower than c and each Pi is a new generating polynomial
set. Then we can recursively apply the above operations to the polynomials
with highest class in P

′. After dealing with all classes, we will obtain a monic
triangular set or constant 1, and generate a group of new polynomial sets. Then
we recursively apply the above operations to every new set. Finally, we will
obtain the monic triangular sets we need. Obviously, for a monic triangular set
{x1+ c1, x2+f1(x1), x3+f2(x2, x1), . . . , xn+fn−1(xn−1, . . . , x1)}, we can easily
solve it.

MFCS has the following properties[6]:

1. The size of polynomials occurring in the whole algorithm can be controlled by
that of the input ones. The expansion of the internal result will not happen.
Note that in different components most polynomials are same, and the same
ones can be shared in the memory with data structure SZDD[11]. For the
above reasons, the memory cost of MFCS is small.

2. MFCS can solve one component very fast. The bitwise complexity of solving
one component is O(LMnd+2), where L is the number of input polynomials,
n is the number of variables, d is the highest degree of the input polynomials
and M is the maximal number of terms for all input polynomials. Obviously,
when d is fixed, this is a polynomial about n.

4 Experimental Results for Attacking AES and Serpent

According to Section 2.2 we can model the Cold Boot key recovery problems
of AES and Serpent as Partial Weighted Max-PoSSo problems. We applied the
ISBS method to solve these problems and compared our results with those
shown in [1]. As in [1], we focused on the 128-bit versions of the two ciphers.

The benchmarks are generated the same way as those in [1]. The experi-
mental platform is a PC with i7 2.8Ghz CPU(only one core is used), and 4G
Memory. For every instance of the problem we performed 100 experiments with
randomly generated keys, and we only used a reduced round of key schedule. In
the first two groups of experiments, we also set δ1 to be 0.001 as [1,8,12] and
used the “aggressive” modelling in most time, where we assume δ1 = 0 instead
of δ1 = 0.001. In the “aggressive” modelling, all equations with K ′

i = 1 should
be satisfied, so they should be added into the set H and the problem reduces to
Partial Max-PoSSo. Note that, the input data in our experiments are generated
with δ1 > 0, thus in “aggressive” modelling the equations in H with Ki = 1 may
be incorrect.

In the following tables, the line “ISBS” shows the results of attacking AES
and Serpent by using ISBS. The line “SCIP” shows the results in [1] where
they used the MIP solver SCIP for solving these problems. The column “aggr”
denotes whether we choose the aggressive (“+”) or normal (“-”) modelling. As
in [1], we also interrupted the solver when the running time exceeded the time
limit. The column ”r” gives the success rate, which is the percentage of the



Solving Polynomial Systems with Noise over F2 and Its Applications 27

instances we recovered the correct key. There are two cases in which we cannot
recover the correct key.

– We interrupted the solver after the time limit.
– The optimal solution we achieved from the (Partial weighted ) Max-PoSSo

problems is not the correct key. In “aggressive” modelling, when some poly-
nomial in H is incorrect, this will always happen. When all polynomials in
H are correct, if we added polynomials in FE which are the checking poly-
nomials into the set H, the optimal solution will always be the correct key.
However, as mentioned before we didn’t do this in order to decrease the
running time. Thus, with a quite low probability, the optimal solution may
not be the correct key.

Table 1. AES considering N rounds of key schedule output

δ0 Method N aggr limit t r min t avg. t max t

0.15 ISBS 4 + 60.0 s 75% 0.002 s 0.07 s 0.15 s
SCIP 4 + 60.0 s 70% 1.78 s 11.77 s 59.16 s

0.30 ISBS 4 + 3600.0 s 70% 0.002 s 0.14 s 2.38 s
SCIP 4 + 3600.0 s 69% 4.86 s 117.68 s 719.99 s

0.35 ISBS 4 + 3600.0 s 66% 0.002 s 0.27 s 7.87 s
SCIP 4 + 3600.0 s 68% 4.45 s 207.07 s 1639.55 s

0.40 ISBS 4 + 3600.0 s 58% 0.002 s 0.84 s 20.30 s
SCIP 4 + 3600.0 s 61% 4.97 s 481.99 s 3600.00 s
SCIP 5 + 3600.0 s 62% 7.72 s 704.33 s 3600.00 s

0.50 ISBS 4 + 3600.0 s 23% 0.002 s 772.02 s 3600.00 s
ISBS 5 + 3600.0 s 63% 0.003 s 1.05 s 46.32 s
SCIP 4 + 3600.0 s 8% 6.57 s 3074.36 s 3600.00 s
SCIP 4 + 7200.0 s 13% 6.10 s 5882.66 s 7200.00 s

Table 1 presents the results of attacking AES. For attacking AES, we didn’t
use the normal(“-”) modelling.3 In the aggressive modelling, by adding some
intermediate variables we convert the S-box polynomials with degree 7 into the
quadratic polynomials[3]. Since these intermediate quadratic polynomials must
be satisfied, we add them into set H. For these problems from AES, after we
solving H, the point in Zero(Result(H)) is small, finding an optimal one from
this set is not too hard. Thus, most of the running time is spent on solving H.
When we use more rounds of key schedule output, we can solve H faster. This
explains why the result of N = 5 is better than that of N = 4 in the case of
δ0 = 0.5. From the results of SCIP, it seems that more rounds will lead to a
worse result. From the results of Table 1, we can see that, for the easy problems,
with keeping the same success rate, the running time of ISBS is much shorter.

3 Since the first round key of AES is its initial key, we have 128 polynomials which
have form xi + 1 or xi. In this case, using ISBS to search the value of polynomials
is equal to exhaustively searching the value of variables.



28 Z. Huang and D. Lin

For the hard problem, the success rate of ISBS is higher, and the running time
of it is shorter.

In the aspect of attacking cipher, our results are worse than those in [12].
Actually, as mentioned before, if we use all rounds of the key schedule, the
running times of ISBS will be much shorter and close to the running times in
[12]. However, using all rounds will make Zero(Result(H)) only contain one point,
and this means that we just need to solve a PoSSo problem instead of a Partial
Max-PoSSo problem. Hence, for testing the efficiency of ISBS for solving Partial
Max-PoSSo problems, we only use 4 or 5 rounds of key schedule and achieved
these poorer attack results.

Table 2. SERPENT considering 32 ·N bits of key schedule output

δ0 Method N aggr limit t r min t avg. t max t

0.05 ISBS 8 − 600.0 s 90% 0.41 s 58.49 s 600.00 s
SCIP 12 − 600.0 s 37% 8.22 s 457.57s 600.00 s

0.15 ISBS 12 + 60.0 s 81% 1.19 s 3.82 s 60.00 s
SCIP 12 + 60.0 s 84% 0.67 s 11.25 s 60.00 s
SCIP 16 + 60.0 s 79% 0.88 s 13.49 s 60.00 s

0.30 ISBS 16 + 600.0 s 81% 4.73 s 11.66 s 58.91 s
SCIP 16 + 600.0 s 74% 1.13s 57.05 s 425.48 s

0.50 ISBS 20 + 3600.0 s 55% 14.11 s 974.69 s 3600.00 s
SCIP 16 + 3600.0 s 38% 136.54 s 2763.68 s 3600.00 s

The results of attacking Serpent are given in Table 2. In the normal modelling
with δ0 = 0.05, we set N = 8. The reason is that in this modelling we don’t
have polynomials in H, and more input polynomials will make us search more
possible values of these polynomials. If N = 4, we can get an optimal result very
fast, but it isn’t the correct key in most time. The reason is that the randomness
of the first round of the Serpent key schedule is poor. By setting N = 8, we have
a good success rate and short running times. In the aggressive modelling, the
situations are similar to those in AES. For SCIP, when N is larger, the results
are worse. For ISBS, more bits of key schedule will make it solve H easier.
Therefore, when δ0 increase we set N larger.

Table 3 presents the results when considering symmetric noise(i.e., δ0 = δ1).
This is a pure Max-PoSSo problem. As mentioned before, when H = ∅, with
less equations ISBS can be more efficient. Thus, in this group of experiments,
we set N = 8. When solving these problems, we used some important tricks
to accelerate the computation. These tricks will be introduced in the appendix
detailedly. From the results, we can see that ISBS has higher success rates and
shorter running time comparing to SCIP.

If we don’t use the incremental solving and backtracking search method, which
means that we only exhaustively search the value of polynomials in the order
of increasing Hamming-weight and solve the corresponding polynomial systems,
when δ0 = δ1 = 0.05 the running time will be about

(
256

0.05·256
) · T0 ≈ 271 ·



Solving Polynomial Systems with Noise over F2 and Its Applications 29

Table 3. SERPENT considering 32 ·N bits of key schedule output(symmetric noise)

δ0 = δ1 Method N limit t r min t avg. t max t

0.01 ISBS 8 3600.0 s 100% 0.78 s 9.87 s 138.19 s
SCIP 12 3600.0 s 96% 4.60 s 256.46 s 3600.00 s

0.02 ISBS 8 3600.0 s 96% 0.80 s 163.56 s 3600.00 s
SCIP 12 3600.0 s 79% 8.20 s 1139.72 s 3600.00 s

0.03 ISBS 8 3600.0 s 90% 1.74 s 577.60 s 3600.00 s
SCIP 12 7200.0 s 53% 24.57 s 4205.34 s 7200.0 s

0.05 ISBS 8 3600.0 s 38% 12.37 s 917.05 s 3600.00 s
SCIP 12 3600.0 s 18% 5.84 s 1921.89 s 3600.00 s

T0, where T0 is the time for solving a polynomial system with 128 variables
and 256 equations. This polynomial system can be easily solved, because of the
easy invertibility of the key schedule operations. From our experiments with 100
instances, the average value of T0 is 0.30 seconds, then 271 · T0 ≈ 269.3 seconds
which is much larger than our result 917.05 ≈ 29.8 seconds.4 This implies that
by using incremental solving and backtracking search method, we avoid a lot
of repeated computation and cut off a lot of redundant branches which highly
improve the efficiency of searching.

5 Conclusion

In this paper, we proposed a new method called ISBS for solving the family of
Max-PoSSo problems over F2, and applied the method in solving the Cold Boot
key recovery problems of AES and Serpent. Our work is inspired by the work
in [1], and provide a new way of solving the non-linear polynomials system with
noise. Our method was combined with the Characteristic Set method, which is a
powerful tool in symbolic computation and has good performances on solving the
boolean polynomial systems. The main innovation of ISBS is the combination
of incremental solving and backtracking search. By this idea, we can use the
former results to reduce the repeated computations and use the conflictions to
cut off a lot of redundant branches. Our experimental data shows that ISBS
has good performances on solving the Cold Boot key recovery problems of AES
and Serpent, and its results are better than the previously existing ones by using
SCIP solver.

References

1. Albrecht, M., Cid, C.: Cold Boot Key Recovery by Solving Polynomial Systems with
Noise. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 57–72.
Springer, Heidelberg (2011)

4 With the tricks introduced in appendix, for every instance in our experiments, we
can search and solve all branches by ISBS within the time limit under the condition
that the number of unsatisfied polynomials ≤ 0.05 · 256 ≈ 13.



30 Z. Huang and D. Lin

2. Chai, F., Gao, X.S., Yuan, C.: A Characteristic Set Method for Solving Boolean
Equations and Applications in Cryptanalysis of Stream Ciphers. Journal of Systems
Science and Complexity 21(2), 191–208 (2008)

3. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501,
pp. 267–287. Springer, Heidelberg (2002)

4. Faugère, J.C.: A New Efficient Algorithm for Computing Gröbner Bases (F4).
Journal of Pure and Applied Algebra 139(1-3), 61–88 (1999)

5. Faugère, J.C.: A New Efficient Algorithm for Computing Gröner Bases Without
Reduction to Zero (F5). In: Proc. ISSAC, pp. 75–83 (2002)

6. Gao, X.S., Huang, Z.: Efficient Characteristic Set Algorithms for Equation Solving
in Finite Fields. Journal of Symbolic Computation 47(6), 655–679 (2012)

7. H̊astad, J.: Satisfying Degree-d Equations over GF[2]n . In: Goldberg, L.A., Jansen,
K., Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM 2011. LNCS, vol. 6845, pp.
242–253. Springer, Heidelberg (2011)

8. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calan-
drino, J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest We Remember:
Cold Boot Attacks on Encryption Keys. In: USENIX Security Symposium, pp.
45–60. USENIX Association (2009)

9. Huang, Z., Lin, D.: Attacking Bivium and Trivium with the Characteristic Set
Method. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS,
vol. 6737, pp. 77–91. Springer, Heidelberg (2011)

10. Huang, Z.: Parametric Equation Solving and Quantifier Elimination in Finite Fields
with the Characteristic Set Method. Jounral of Systmes Science and Complex-
ity 25(4), 778–791 (2012)

11. Minto, S.: Zero-Sppressed BDDs for Set Manipulation in Combinatorial Problems.
In: Proc. ACM/IEEE Design Automation, pp. 272–277. ACM Press (1993)

12. Kamal, A.A., Youssef, A.M.: Applications of SAT Solvers to AES key Recovery
from Decayed Key Schedule Images. In: Proceedings of the Fourth International
Conference on Emerging Security Information, Systems and Technologies, SECUR-
WARE 2010, Venice/Mestre, Italy, July 18-25 (2010)

13. Wu, W.T.: Basic Principles of Mechanical Theorem-proving in Elementary Geome-
tries. Journal Automated Reasoning 2, 221–252 (1986)

14. Zhao, S.W., Gao, X.S.: Minimal Achievable Approximation Ratio for MAX-MQ in
Finite Fields. Theoretical Computer Science 410(21-23), 2285–2290 (2009)

Appendix: Some Tricks Used in ISBS for Solving
Symmetric Noisy Problems

In this section, we will introduce some tricks we used in solving the problems in
Table 3. For this kind of problems, these tricks can greatly improve the efficiency
of ISBS.

(I) In ISBS, if ubound is smaller, the branches we need to search is less, and
the algorithm will end faster. When umin, the value of the cost function corre-
sponding to the optimal solution, is small, we can increasingly set the ubound as
k, 2k, 3k, . . . , u0. Here k is a value which is determined by the number of input
polynomials, and u0 is the value of the cost function corresponding to Qn which



Solving Polynomial Systems with Noise over F2 and Its Applications 31

is generated from Step 2. Then we try to find a solution under these bounds.
Precisely speaking, in Step 3, we set S = ∅ and ubound = mk, m = 1, 2, . . . If
ISBS returns a nonempty solution when ubound = mk < u0 for some m, then it
is the optimal solution of the problem. Otherwise, we set ubound = (m + 1)k if
(m+1)k < u0; or ubound = u0 if (m+1)k ≥ u0. Then we execute Step 3-5 of ISBS
again until we achieve a nonempty solution. If we cannot achieve a nonempty
solution, Qn from Step 2 will be the optimal solution. The disadvantage of this
modification is that in the case of ubound = (m + 1)k we need to search a lot
of branches which have already be searched in the case of ubound = mk. If umin

is big, the cost of repeated computation is big. That is why we only use this
modification when umin is small.

(II) Note that, in our experiments, we used 256 bits of key schedule output,
while the key is 128 bits. Thus the input polynomial system has 128 variables
and 256 polynomials. In the experiments, after we had incrementally solved
the first 128 polynomials with any assignment of [e1, . . . , e128], we always ob-
tained a result which only contains several points. Then the process of solving
and backtracking the following 128 polynomials is very easy. For example, if
Zero({f1+e′1, . . . , f128+e′128}) = {x0} for some [e′1, . . . , e′128], where x0 is a point
in F

n
2 . Then [e129, . . . , e256] must be equal to [f129(x0), . . . , f256(x0)]. Any flip of

ei, i = 129, . . . , 256 will lead to Result(Result({f1+e′1, . . . , f128+e′128}), fi+ei+
1) = 1, so this branch will be cut off instantly.

Based on the above observation, given a ubound, the running time of ISBS is
almost equal to the time of searching and solving {f1+e1, f2+e2, . . . , f128+e128}
where [e1, . . . , e128] satisfies u(e1, e2, . . . , e128) ≤ ubound and u(e1, e2, . . . , e128) is
the value of the cost function corresponding to [e1, e2, . . . , e128]. The cost of the
operations about the following 128 polynomials can be ignored.

For an assignment [e01, e
0
2, . . . , e

0
256] of [e1, e2, . . . , e256] satisfying u(e01, e

0
2, . . . ,

e0256) ≤ ubound, we have u(e
0
1, . . . , e

0
128) ≤ 1

2ubound or u(e0129, . . . , e
0
256) ≤ 1

2ubound.
Instead of searching all the branches satisfying u(e1, e2, . . . , e128) ≤ ubound, we
can search the branches satisfying u(e1, e2, . . . , e128) ≤ 1

2ubound or u(e129, e130, . . .
, e256) ≤ 1

2ubound. To do this, we can use ISBS one time to solve {f1, . . . , f128, f129
, . . . , f256} under the condition of u(e1, e2, . . . , e128) ≤ 1

2ubound, then use ISBS
another time to solve {f129, . . . , f256, f1, . . . , f128} under the condition of u(e129,
e130, . . . , e256) ≤ 1

2ubound. To understand why this modification can accelerate
the computation, we need the following two lemmas.

Lemma 1. Let a, b, n be positive integers, and n > a+b. Then
a∑

i=0

(
n
i

)
+

b∑

i=0

(
n
i

) ≥
�a+b

2 �∑

i=0

(
n
i

)
+

� a+b
2 	∑

i=0

(
n
i

)
. The equality holds if and only if a = b or a+ b = n− 1.

Proof: Obviously, when a = b the equality holds. If a + b = n − 1,
a∑

i=0

(
n
i

)
+

b∑

i=0

(
n
i

)
=

a∑

i=0

(
n
i

)
+

n∑

i=n−b

(
n
i

)
=

a∑

i=0

(
n
i

)
+

n∑

i=a+1

(
n
i

)
= 2n.

�a+b
2 �∑

i=0

(
n
i

)
+

�a+b
2 	∑

i=0

(
n
i

)
=



32 Z. Huang and D. Lin

�n−1
2 �∑

i=0

(
n
i

)
+

n∑

i=n−�n−1
2 	

(
n
i

)
=

�n−1
2 �∑

i=0

(
n
i

)
+

n∑

i=�n−1
2 �+1

(
n
i

)
= 2n. Thus, the equality

holds when a+ b = n− 1.
If a �= b and a + b < n − 1, we can assume a > b without loss of generality.

Then it is equal to prove

(
n

b+ 1

)

+

(
n

b+ 2

)

+ · · ·+
(

n

�a+b
2 


)

<

(
n

�a+b
2 �+ 1

)

+

(
n

�a+b
2 �+ 2

)

+ · · ·+
(
n

a

)

.

(2)
Note that both sides of the inequality have the same number of terms.

– If a ≤ �n
2 
, obviously we have

(
n

b+1

)
<

(
n

�a+b
2 �+1

)
,
(

n
b+2

)
<

(
n

�a+b
2 �+2

)
, . . . ,

(
n

�a+b
2 	

)
<

(
n
a

)
. Summing up all these inequalities, we can obtain (2).

– If a > �n
2 
, then we can divide the right part of (2) into two parts

(
n

�a+b
2 �+ 1

)

+ · · ·+
(

n

�n
2 


)

,

(
n

�n
2 
+ 1

)

+ · · ·+
(
n

a

)

, (3)

and also divide the left part of (2) into two parts

(
n

a+ b− �n
2 
+ 1

)

+ · · ·+
(

n

�a+b
2 


)

,

(
n

b+ 1

)

+ · · ·+
(

n

a+ b − �n
2 


)

. (4)

The first parts of (3) and (4) have the same number of terms, and the second
parts of (3) and (4) also have the same number of terms. Since �n

2 
 > �a+b
2 
,

we have
(

n
a+b−�n

2 	+1

)
<

(
n

� a+b
2 �+1

)
, . . . ,

(
n

�a+b
2 	

)
<

(
n

�n
2 	
)
. Then

(
n

a+b−�n
2 	+1

)
+

· · ·+ (
n

� a+b
2 	

)
<

(
n

� a+b
2 �+1

)
+ · · ·+ (

n
�n

2 	
)
. Then it is sufficient to prove that the

second part of (3) is not less than that of (4). We have
(

n
�n

2 	+1

)
+
(

n
�n

2 	+2

)
+

· · ·+ (
n
a

)
=

(
n

�n
2 �−1

)
+
(

n
�n

2 �−2

) · · ·+ (
n

n−a

)
=

(
n

n−a

)
+
(

n
n−a+1

)
+ · · ·+ (

n
�n

2 �−1

)
.

Since n− a > b + 1, we have
(

n
n−a

)
>

(
n

b+1

)
, . . . ,

(
n

�n
2 �−1

)
>

(
n

a+b−�n
2 	
)
. This

proves the inequality (2). �

Furthermore, we can prove the following lemma similarly as Lemma 1,

Lemma 2. Let a, b, n be positive integers. Assume n > a + b and a > b. Then
a∑

i=0

(
n
i

)
+

b∑

i=0

(
n
i

) ≥
a−t∑

i=0

(
n
i

)
+

b+t∑

i=0

(
n
i

)
, where t is an integer satisfying 0 < t < a−b

2 .

The equality holds if and only if a+ b = n− 1.

According to Lemma 1, we have
ubound∑

i=0

(
128
i

)
>

1
2ubound∑

i=0

(
128
i

)
+

1
2ubound∑

i=0

(
128
i

)
. In the

problems of Table 3, the value of the cost function is the number of unsatisfying
equations. Thus, the inequality implies that the number of branches satisfying



Solving Polynomial Systems with Noise over F2 and Its Applications 33

u(e1, e2, . . . , e128) ≤ ubound is larger than the number of branches satisfying
u(e1, e2, . . . , e128) ≤ 1

2ubound or u(e129, e130, . . . , e256) ≤ 1
2ubound without consid-

ering cutting off branching. For example, if ubound = 10, then
ubound∑

i=0

(
128
i

) ≈ 247.8

and

1
2ubound∑

i=0

(
128
i

)
+

1
2ubound∑

i=0

(
128
i

) ≈ 229.0. Obviously, this is a remarkable improve-

ment.
However, in the Serpent problems, solving a branch with input {f129, . . . , f256

, f1, . . . , f128} is slower than solving a branch with input {f1, . . . , f128, f129, . . . ,
f256}. The reason is that f1, . . . , f256 is a polynomials sequence which is sorted
from the “simplest” one to the “most complex” one. In this order incremental
solving can be more efficient. A better strategy is considering the branches sat-
isfying u(e1, e2, . . . , e128) ≤ 6

10ubound or u(e129, e130, . . . , e256) ≤ 4
10ubound. From

Lemma 2, we know that under this strategy the branches we need to solve are
still much less than those in the case of u(e1, e2, . . . , e128) ≤ ubound. From ex-
periments, we found that the total running time under this strategy will be
smaller than that under the strategy of considering u(e1, e2, . . . , e128) ≤ 1

2ubound

or u(e129, e130, . . . , e256) ≤ 1
2ubound.

In the experiments of Table 3 when δ0 = 0.01, 0.02, 0.03, we used trick (I).
For the problems with δ0 = 0.05, we used both trick (I) and trick (II).


	A New Method for Solving Polynomial Systems with Noise over F2 and Its Applications in Cold Boot Key Recovery
	Introduction
	The Family of Max-PoSSo Problems and the Cold Boot Problem 
	The Family of Max-PoSSo Problems
	Cold Boot Key Recovery as Max-PoSSo

	A New Method for Solving Max-PoSSo Problems
	The Incremental Solving and Backtracking Search (ISBS) Method
	The Characteristic Set Method in F2

	Experimental Results for Attacking AES and Serpent
	Conclusion
	References





