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Abstract. The computational hardness of solving large systems of sparse and low-degree multivariate
equations is a necessary condition for the security of most modern symmetric cryptographic schemes.
Notably, most cryptosystems can be implemented with inexpensive hardware, and have a low gate
counts, resulting in a sparse system of equations, which in turn renders such attacks feasible. On one
hand, numerous recent papers on the XL algorithm and more sophisticated Gröbner-bases techniques
[5, 7, 13, 14] demonstrate that systems of equations are e�ciently solvable when they are su�ciently
overdetermined or have a hidden internal algebraic structure that implies the existence of some use-
ful algebraic relations. On the other hand, most of this work, as well as most successful algebraic
attacks, involve dense, not sparse systems, at least until linearization by XL or a similar algorithm.
No polynomial-system-solving algorithm we are aware of, demonstrates that a significant benefit is
obtained from the extreme sparsity of some systems of equations.
In this paper, we study methods for e�ciently converting systems of low-degree sparse multivariate
equations into a conjunctive normal form satisfiability (CNF-SAT) problem, for which excellent heuristic
algorithms have been developed in recent years. A direct application of this method gives very e�cient
results: we show that sparse multivariate quadratic systems (especially if over-defined) can be solved
much faster than by exhaustive search if �  1/100. In particular, our method requires no additional
memory beyond that required to store the problem, and so often terminates with an answer for problems
that cause Magma and Singular to crash. On the other hand, if Magma or Singular do not crash, then
they tend to be faster than our method, but this case includes only the smallest sample problems.

Keywords: Algebraic Cryptanalysis, over-defined sparse multivariate systems of equations, logical
cryptanalysis, SAT solvers, MQ, quadratic polynomials over GF(2).

1 Introduction

It is well known that the problem of solving a multivariate simultaneous system of quadratic equa-
tions over GF (2) (the MQ problem) is NP-hard. Another NP-hard problem is finding a satisfying
assignment for a logical expression in several variables (the SAT problem). Inspired by the pos-
sibility that either could be an e�cient tool for the solution of the other, since all NP-Complete
problems are polynomially equivalent, we began this investigation.

There exist several o↵-the-shelf SAT-solvers, such as MiniSAT [12], which can solve even rela-
tively large SAT problems on an ordinary PC. We investigate the use of SAT-solvers as a tool for
solving a random MQ problem. In particular, we show that if the system of equations is sparse
or over-defined, then the SAT-solver technique works faster than brue-force exhaustive search. If
the system is both sparse and over-defined, then the systems can be solved quite e↵ectively (See
Section 5).

In Section 1.1 we describe how this work applies to algebraic cryptanalysis. We define some
notation and terms in Section 2, and describe the method of conversion of MQ problems into CNF-
SAT problems in Section 3. A brief overview of SAT solvers is given in Section 4 and our results



in Section 5 and review previous work in Section 6. Finally, we note possible applications to cubic
systems in Appendix A.

1.1 Application to Cryptanalysis

Algebraic Cryptanalysis can be summarized as a two-step process. First, given a cipher system, one
converts it into a system of equations. Second, the system of equations is solved to retrieve either a
key or a plaintext. Furthermore, note that all systems of equations over finite fields can be written
as polynomial systems.

As pointed out in Courtois and Pieprzyk [7], this system of equations will be sparse, since
e�cient implementations of real-world systems require a low gate-count. In practice, the systems
are very sparse—the system used to break six rounds of DES in [6] has � near zero. It is also
known that any system of any degree can be written as a degree 2 system. This is done by using
the following step, repeatedly:

{m = wxyz}) {a = wx; b = yz;m = ab}

Finally, it is usually the case that one can write additional equations by assuming that a
particular number of plaintext-ciphertext pairs are available. While this is not literally unbounded,
as many stream ciphers have a limit of 240 bits before a new key is required, generally one has an
over-abundance of equations. Therefore, we include in this study only systems where the number
of equations is greater than or equal to the number of unknowns.

2 Notation and Definitions

An instance of the MQ problem is a set of functions

f1(x1, . . . , xn

) = y1, f2(x1, . . . , xn

) = y2, . . . , fm

(x1, . . . , xn

) = y

m

where each f

i

is a second degree polynomial. By adjusting the constant term of each polynomial,
it becomes su�cient to consider only those problems with y

j

= 0 for all j. Note, n is the number
of variables and m is the number equations.

If we define c = m/n or cn = m, then c = 1 will imply an exactly defined system, c > 1
an over-defined system and c < 1 an under-defined system. We will not consider under-defined
systems here. The value of c will be called “the over-definition” of a system. Let M denote the
number of possible monomials, including the constant monomial. Since we consider only quadratic
polynomials (except for Section A on cubics)

M =
 

n

2

!

+
 

n

1

!
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The system will be generated by flipping a weighted coin for each of the M coe�cients for each
equation. The value � 2 (0, 1] will be called the sparsity, and is the probability that a randomly
selected coe�cient is non-zero (equal to one). If � << 1/2, the system is considered sparse.

An instance of the Conjunctive Normal Form SAT or CNF-SAT problem is a set of clauses.
Each clause is a large disjunction (OR-gate) of several variables, which can appear negated or not
negated. If a set of values for all n variables makes every clause evaluate to true, then it is said
to be a satisfying assignment. In this way, the set of clauses can be thought of as one long logical
expression, namely a conjunction (AND-gate) of all the clauses.



3 Converting MQ to SAT

3.1 The Conversion

The conversion proceeds by three major steps. First, some preprocessing might be performed to
make the system more amenable to this conversion (more detail will follow). Next, the system of
polynomials will be converted to a (larger) linear system and a set of CNF clauses that render each
monomial equivalent to a variable in that linear system. Lastly, the linear system will be converted
to an equivalent set of clauses.

Minor Technicality The CNF form does not have any constants. Adding the clause consisting of
(T ), or equivalently (T _ T _ · · · _ T ), would require the variable T to be true in any satisfying
solution, since all clauses must be true in such a solution. Once this is done, the variable T will
serve the place of the constant 1, and if needed, the variable T̄ will serve the place of the constant
0.

Step One: From a Polynomial System to a Linear System Based on the above technicality,
we can consider the constant term 1 to be a variable. After that, every polynomial is now a sum of
linear and higher degree terms. Those terms of higher degree will be handled as follows.

The logical expression

(w _ ā)(x _ ā)(y _ ā)(z _ ā)(a _ w̄ _ x̄ _ ȳ _ z̄)

is tautologically equivalent to a () (w^x^ y^ z), or the GF (2) equation m = wxyz. Therefore,
for each monomial of degree d > 1 that appears in the system of equations, we shall introduce one
dummy variable. One can see that d + 1 clauses are required, and the total length of those clauses
is 3d + 1.

Obviously, if a monomial appears more than once, there is no need to encode it twice, but
instead, it should be replaced by its previously defined dummy variable. On the other hand, in a
large system, particularly an over-defined one, it is likely that every possible monomial appears
at least once in some equation in the system. Therefore we will assume this is the case, but in
extremely sparse systems that are not very over-defined, this is pessimistic, particularly for high
degree systems.

Step Two: From a Linear System to a Conjunctive Normal Form Expression Each
polynomial is now a sum of variables, or equivalently a logical XOR. Unfortunately, long XORs
are known to be hard problems for SAT solvers [9]. In particular, the sum (a + b + c + d) = 0 is
equivalent to

(ā _ b _ c _ d)(a _ b̄ _ c _ d̄)(a _ b _ c̄ _ d)(a _ b _ c _ d̄) (1)
(ā _ b̄ _ c̄ _ d)(ā _ b̄ _ c _ d̄)(ā _ b _ c̄ _ d̄)(a _ b̄ _ c̄ _ d̄)

which is to say, all arrangements of the four variables, with one and three negations, or all odd
numbers less than four. For a sum of length `, where 2 b`/2c = j, this requires
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clauses, which is exponential. To remedy this, cut each sum, into subsums of length 4. For example,
the equation x1 + x2 + · · · + x

`

= 0 is clearly equivalent to

x1 + x2 + x3 + y1 = 0
y1 + x6 + x7 + y2 = 0

...
...

...
y

i

+ x4i+2 + x4i+3 + y

i+1 = 0
...

...
...

y

h

+ x

`�2 + x

`�1 + x

`

= 0

if ` is even. (If ` is odd, the final sum is length 3, this is more e�cient because a sum or XOR of
length 3 requires only 4 clauses. Therefore it is safe to be pessimistic and assume all equations are
of even length). In either case, one can calculate h = d`/2e � 2. Thus there will be h + 1 subsums,
and each will require 8 clauses of length 4 each, via Equation 2.

The Cutting Number Here all sums were cut into subsums of length 4. One could have done this
with lengths 3, 5 or higher. In particular, we performed experiments on 3, 4, 5 and 6 as the cutting
number. It turns out that 6 is optimal. See Section 5.2 and Table 2.

3.2 Measures of E�ciency

Three common measures of the size of a CNF-SAT problem are the number of clauses, the total
length of all the clauses, and the number of variables. It is not known which of these is a better
model of the di�culty of a CNF expression. Initially we have n variables, and 0 clauses of total
length 0.

For a quadratic system of polynomials, the cost for each monomial in Step One of the conversion
is 1 dummy variable, 3 clauses, of total length 7. This needs to be done for all possible M � n� 1
quadratic monomials. The constant monomial requires 1 dummy variable, and 1 clause of length 1.

The cost in Step Two requires an estimate of the expected value of the length of each equation.
Since there are M possible coe�cients, then this is equal to M�. For the moment, assume the
cutting number is 4. There will be (in expected value) M�/2� 1 subsums per equation, requiring
M�/2� 2 dummy variables, 4M� � 8 clauses and total length 16M� � 32.

This is a total of

– Variables: n + 1 + (M � n� 1)(1) + m(M�/2� 1).
– Clauses: 0 + 1 + (M � n� 1)(3) + m(4M� � 8).
– Length: 0 + 1 + (M � n� 1)(7) + m(16M� � 32).

Substituting m = cn and M = n

2
/2 + n/2 + 1, one obtains

– Variables: ⇠ n

2
/2 + cn

3
�/4.

– Clauses: ⇠ (3/2)n2 + 2cn

3
�.

– Length: ⇠ (7/2)n2 + 8cn

3
�.

where f(x) ⇠ g(x) if and only if lim
x!1 f(x)/g(x) = 1. Furthermore, so long as � is !(1/cn) then

the first term of each of those expressions can be discarded. This would be the case in all but the
most sparse systems. These expressions are summarized, for several values of cutting number, in
Table 3.2



Cutting Number Variables Clauses Length

Cut by 3 ⇠ cn3�/2 ⇠ 2cn3� ⇠ 6cn3�
Cut by 4 ⇠ cn3�/4 ⇠ 2cn3� ⇠ 8cn3�
Cut by 5 ⇠ cn3�/6 ⇠ (8/3)cn3� ⇠ (40/3)cn3�
Cut by 6 ⇠ cn3�/8 ⇠ 4cn3� ⇠ 24cn3�
Cut by 7 ⇠ cn3�/10 ⇠ (6.4)cn3� ⇠ 44.8cn3�
Cut by 8 ⇠ cn3�/12 ⇠ (32/3)cn3� ⇠ (128/3)cn3�

Table 1. CNF Expression Di�culty Measures for Quadratic Systems, by Cutting Number

3.3 Preprocessing

It is clear from the above expressions that n is the crucial variable in determining the number
of dummy variables, clauses, and total lengths of clauses. With this in mind, we devised the fol-
lowing preprocessing scheme, based on the idea of Gaussian Elimination. It is executed before the
conversion begins. For any polynomial one can consider the monomial as

x

a0 = x

a1 + x

a2 + · · · + x

an + (quadratic terms) + (+1)

where the +1 term is optional, and a

i

2 {1, . . . , n}. This is, in a sense, a re-definition of x

a0 , and
so we add this equation to every polynomial in the system where x

a0 appears. Afterword, x

a0 will
appear nowhere in the system of equations, except in its definition, e↵ectively eliminating it as a
variable. Since SAT-solvers tend to choose the most-frequently-appearing variables when deciding
which cases to branch on (except in a constant fraction of cases when they select randomly, e.g.
1% of the time), x

a0 will not be calculated until all other variables have been set.
If there are t equations of short length in the system, then after preprocessing these t variables

only appear in their own definitions (not even the definitions of each other), and so far as the main
system is concerned, there are now n � t variables. In practice, the e↵ect of this was slightly less
than a doubling of performance, see Section 5.2.

We would only consider a polynomial for elimination if it were of length 4 or shorter (called
“light massage”) or length 10 or shorter (called “deep massage”). The reason for the length limit is
to minimize the increase of � that occurs as follows. When performing Gaussian Elimination on an
m⇥ n sparse boolean matrix A, in the ith iteration, the � in the region A

i+1,i+1 . . . A

m,n

will tend
to be larger (a higher fraction of ones) than that of A

i,i

. . . A

m,n

in the previous iteration [1, 11].
Even in “Structured Gaussian Elimination”, when the lowest weight row is selected for pivoting
at each step, this tends to occur. By adding two rows, the new row will have as many ones as the
sum of the weights of the two original rows, minus any accidental cancellations. Therefore, by only
utilizing low weight rows, one can reduce the increase in �. See the experiments in Section 5.2, and
Table 2, for the e↵ect.

3.4 Fixing Variables in Advance

Since cryptographic keys are generated uniformly at random, it makes sense to generate the x

i

’s
as fair coins. But suppose g of these are directly revealed to the SAT solver by including the short
equations x1 = 1, x2 = 0, . . . , x

g

= 1, and that a satisfying solution is found in time t

SAT

. A real
world adversary would not have these g values of course, and would have to guess them, requiring
total time 2g�1

t

SAT

. As in algebraic cryptanalysis [5] it turns out that g = 0 is not the optimal
solution. In our experiments, we tried all g within the neighborhood of values which produced t

SAT

between 1 second and 1 hour, to locate the optimum.



Since exhaustive search requires checking 2n�1 possible values of x1, . . . , xn

on average, then
this method is faster than brute force if and only if the time required to check one potential key,
t

var

satisfies

t

ver

> t

SAT

2�(n�g)

This method is useful for the cryptanalysis of a specific system, e.g. DES [6]. In addition to
having fewer variables, note that m/n < m/(n� g), and so the “over-definition” or c will increase,
yielding further benefit to fixing variables.

However, for random systems of quadratic equations, fixing variables g and substitution their
values results in another system, which is an example of a random system with m equations and
n � g unknowns, but with slightly di↵erent sparsity. Therefore, we did not have to try di↵erent
values of g in our final performance experiments, but chose g = 0.

Parallelization Suppose g bits are to be fixed, and 2p processors (for some p) are available, with
p < g. Then of the 2g possible values of the g fixed bits, each processor could be assigned 2g�p of
them. After that, no communication between processors is required, nor can processors block each
other. Therefore parallelization is very e�cient. If interprocess communication is possible, then the
“learned clauses” (explained in Section 4) can be propagated to all running SAT-solvers.

In the event that thousands of volunteers could be found, as in the DES challenge of 1997, or
DESCHALL Project [10], then the low communications overhead would be very important.

4 SAT Solvers

SAT solvers have made a lot of progress in recent years, with both theoretical and practical im-
provements. In the major SAT competition [19], held annually, each year almost all the previous
year’s winners are beaten by new, more e�cient solvers. Because of these competitions, SAT solvers
are carefully designed to run on a large range of problems with no tuning required by users.

The huge success of SAT solvers means that both in research and industry many problems are
solved by mapping them to CNF and solving them using these highly tuned SAT solvers. This may
appear ine�cient at first, as the mapping to CNF can lose much of the structure of the original
problem. However the performance of SAT solvers is often able to o↵set this loss of structural
information.

The basis of most SAT solvers is the Davis-Putnam backtrack search. This searches for a solution
to a problem by recursively choosing a variable, first trying to assign it one value and then the other.
At each stage of search a propagation step is performed, which attempts to imply the assignments
to as many unassigned variables as possible based on the assignments made so far. This may also
uncover a clause which cannot be satisfied, so search backtracks.

In most SAT solvers the only reasoning step used is to look for clauses where all literals are
false except one, so the remaining one must be true. The authors of Cha↵ [24] found this simple
reasoning step was found to take the majority of the time (>90%) in most SAT solvers, so designed
an improved algorithm, called “watched literals”, which allows a large number of large clauses to be
e�ciently propagated. The major strengths of this algorithm is that during search it only watched
two variables in each clause, because as long as there are two unassigned variables in a clause it
could not possibly perform any propagation. Further, due to clever data structure design it is not
necessary to save and restore the state of the algorithm when search backtracks.

Another important feature of SAT solvers, which existed before Cha↵, is conflict resolution.
The solver will know exactly which clause failed, and for each variable in it what caused that



variable to be assigned. By constructing a graph of all the decisions which lead to the failure, it
is possible to construct a minimal clause which “explains” the reason for failure. The hope is that
this explanation will be a new clause not present in the original problem. In Cha↵ this new clause
has three main uses.

1. Conflict Related Backjumping: At the point of failure, the new learned clause must be false by
definition. It may be necessary to backtrack many levels in the search before the clause stops
being false. This allows for many parts of the search to be skipped.

2. Learned Clauses: The new clause is added to the problem, and will therefore hopefully stop
search earlier in other parts of the search.

3. Conflict-Based Heuristics: The heuristic which chooses which variable should be chosen next
during search looks for the variable which has occurred in the most of the new conflict clauses.
The hope is that this variable is important to search, and will cause search to fail faster.

During search, many new clauses will be learned, and simply storing all of them can become very
expensive. Cha↵ keeps a list of which learned clauses have been most useful in terms of which have
propagated most often and periodically throws away the ones which have been least productive.

The final feature of Cha↵ is that it periodically restarts the search, although keeping the in-
formation gained to guide the variable heuristics and the learnt clauses. This helps particularly on
hard problems, as choosing the wrong variable for the first few branches appears to have a massive
impact. This also provides the ability to learn new clauses over an entirely new set of variables.
The number of search nodes between restarts is increased as search progresses, so that eventually
search must complete.

The solver used in this paper is MiniSAT 2.0 [12], a minimalist open-source SAT solver which
has won a series of awards including the three industrial categories in the SAT 2005 competition
and first place in SAT-Race 2006. Mini-SAT is based on a similar basis to Cha↵, but the algorithms
involved have been optimized and carefully implemented. Also, Mini-SAT has carefully optimized
variants of the variable order heuristics and learned clause removal heuristics.

Note About Randomness: The program MiniSAT is a randomized algorithm in the sense of occasion-
ally using probabilistic reasoning. However, in order to guarantee reproducibility, the randomness
is seeded from a hash of the input file. Therefore, running the same input file several times yields
the same running time, to within 1%. Obviously, this “locked” randomness maybe a lucky choice,
or an unlucky one. Since the actual performance of MiniSAT on these problems is log-normal (see
Section 5.1), the consequences of an unlucky choice are drastic. Therefore, one should generate
20–50 CNF files of the same system, each perhaps di↵erent by fixing a di↵erent subset of g of the
original n variables, or perhaps by reordering the clauses in a random shu✏e.

The latter is very computationally cheap, but the former is better, as casual experimentation
has shown there are definitely “lucky” and “unlucky” choices of variables to fix. More precisely, the
running time is not dependent on g alone, but also the specific g out of n monomials chosen to be
fixed. The expected value of the running time in practice can then be calculated as the mean of
the running times of the 20–50 samples, each with a distinct random choice of fixed variables.

5 Experimental Results

In general, the running times are highly variable. We propose that the log-normal distribution,
sometimes called Gibrat’s distribution, is a reasonable model of the running time for a given system.
This implies merely that the running time t is distributed as e

x, where x is some random variable



with the normal (Gaussian) distribution. In practice, however, this presents an experimental design
challenge.

The distributions of the running times vary so wildly that at absolute minimum, 50 experiments
must be performed to get an estimate of the expectation. Also, minor improvements, such as
parameters of massaging, are only statistically significant after hundreds of repeated trials—which
makes careful tuning of the massaging process impossible.

5.1 The Log-Normal Distribution of Running Times

Examine Figures 1 and 2, which plot the probability distribution of the running time, and its
natural logarithm, respectively. One can observe that the second figure “looks normal”, in the
sense of being a bell curve that has had its right end truncated.

The kurtosis of a random variable is a measure of “how close to normal” it is, and takes
values in [�3,1). The normal distribution has a kurtosis of zero, and positive kurtosis implies a
leptokurtic distribution, (one with values near the mean being more common than in the Gaussian),
and negative kurtosis implies a platykurtic distribution. The plot of running times suggests an
exponential of some kind, and so upon taking the natural logarithm of each point, a set of values
with very low kurtosis (0.07) was found. The plot is close to a bell curve, and is from 443 data
points, 14 of which were longer than the manually set 1800 sec time out, and 427 of which were
plotted. Since log(1800) ⇡ 7.496, this explains why the graph seems truncated at log t > 7.50.

Fig. 1. The Distribution of Running Times, Experiment 1

These trials were of a system of equations with n = 64,m = 640, c = 10,� = 1/100, with
g = 15 variables fixed in advance. The cutting number was 5, and light massaging was applied. The
average running time of those that completed was 326.25 seconds, on one processor; since brute
force would have to make an expectation of 248 guesses to find the 49 bits not guessed, this is faster
than brute force if and only if one guess can be verified in less than t

ver

= 0.001159 nanoseconds,
on one processor, which is absurd for modern technological means. Of course, newer and faster
processors would improve the running time of both the SAT-solver and the brute force approach,
though it is not possible to predict if these improvements will happen at the same rate.



Fig. 2. The Distribution of the Logarithm of Running Times, Experiment 1

5.2 The Optimal Cutting Number

See Table 2. The system solved here is identical to that in the previous experiment, except di↵erent
cutting numbers and massaging numbers were used during the conversion. Also, only 50 experiments
were run. The result shows that deep massaging is a worthwhile step, as it cuts the running time
by half and takes only a few seconds. Furthermore, it shows that cutting by six is optimal, at least
for this system. Note, cutting by 8 would produce extremely large files (around 11 Mb)—those
for cutting by 7 were already 5.66 Mb. Both in this case, and in casual experiments with other
systems of equations, the running time does not depend too much on cutting number (also visible
in Table 2), and that cutting by six remains e�cient.

The kurtosis is seen to vary considerably in the table. Also, some of the modes have kurtosis
near zero, which would imply a normal and not log-normal distribution. This is an artifact of having
“only 50” experiments per mode. Among statisticians, a common rule is that a kurtosis of ±1 is
“reasonably close to Gaussian,” which is the case in all but two of the systems in Table 2 for the
logarithm of the running time.

The massage ratio is the quotient of the running time with massaging to that of the running
time without. As one can see, the e↵ects of a deep massage were slightly less than doubling the
speed of the system. A light massage was even detrimental at times. This is because the requirement
that a polynomial only be length 4 is quite severe (very few polynomials are that short). Therefore,
there is only a small reduction in the number of variables, which might not be su�cient to o↵set
the increase in �.

5.3 Comparison with MAGMA, Singular

See Table 3. The following experiments were performed using deep massaging, and cutting number
equal to six, on a 2 GHz PC. By Singular, we refer to version 3.0.2 [28]. By MAGMA, we refer
to version 2.11-2, and by MiniSAT, we refer to version 2.0 [12]. Various values of n, � and c were
chosen to highlight the role of the number of variables, the sparsity, and the over-definition of the
system.



Cut by 3 Cut by 4 Cut by 5 Cut by 6 Cut by 7

No Massaging

Näıve Average 393.94 279.71 179.66 253.15 340.66
Näıve StDev 433.13 287.33 182.18 283.09 361.04

Näıve Kurtosis 0.93 5.12 0.79 1.16 2.47

Average(ln) 5.11 4.96 4.55 4.72 5.2
StDev(ln) 1.63 1.46 1.35 1.51 1.27

Kurtosis(ln) 0.51 0.8 0.43 -0.5 -0.32

Light Massaging

Näıve Average 413.74 181.86 269.59 217.54 259.73
Näıve StDev 439.71 160.23 301.48 295.88 237.52

Näıve Kurtosis 0.04 0.08 3.68 6.85 0.01
Massage Ratio 1.05 0.65 1.5 0.86 0.76

Average(ln) 5.3 4.64 4.84 4.52 4.87
StDev(ln) 1.39 1.29 1.5 1.47 1.5

Kurtosis(ln) -0.38 0.07 0.09 -0.14 0.52

Deep Massaging

Näıve Average 280.22 198.15 204.48 144.94 185.44
Näıve StDev 363.64 292.21 210.53 150.88 49.53

Näıve Kurtosis 5.67 9.24 3.74 0.62 4.69
Massage Ratio 0.71 0.71 1.14 0.57 0.54

Average(ln) 4.82 4.34 4.54 4.07 4.33
StDev(ln) 1.48 1.68 1.63 1.73 1.54

Kurtosis(ln) 1.1 2.41 0.75 -0.06 -0.23

Table 2. Running Time Statistics in Seconds



In particular, this method is much worse than brute force for dense systems, but far better
than brute force for sparse systems (a t

ver

⇡ 10�9 seconds would be the smallest value that could
represent present capabilities). The transition appears somewhere near � = 1/100. The line marked
n = 49 represents the experiments done in the previous part of this paper.

Finally, it is interesting to note that if Magma and Singular do not crash, then they out-perform
our method. However, they do crash for many of the systems in this study, with an “out of memory”
error. In practice, SAT-solvers do not require more memory than that required to hold the problem.
This is not the case for Gröbner Bases algorithms.

n m c � Magma Singular ANFtoCNF & MiniSAT tver

22 220 10 0.5 1.7 sec 1.0 sec 4021.99 sec 1.92⇥ 10�3 sec
30 150 5 0.1 3.5 sec 560 sec ⇡ 11, 000 sec 2.05⇥ 10�5 sec
52 520 10 0.01 277.890 sec crashed 789.734 sec 3.51⇥ 10�13 sec
136 1360 10 10�3 crashed crashed ?? ??
263 2630 10 10�4 ?? ?? 2846.95 sec 6.54⇥ 10�38 sec

22 25 1.1 0.5 65.5 sec ⇡ 7200 sec 1451.62 sec 6.92⇥ 10�4 sec
30 33 1.1 0.1 crashed crashed 15,021.4 sec 2.80⇥ 10�5 sec
52 58 1.1 0.01 ?? ?? ?? ??
133 157 1.1 10�3 ?? ?? ?? ??

128 1280 10 10�3 < 1 sec crashed 0.25 sec 1.47⇥ 10�39 sec
250 2500 10 10�4 ?? 91.5 sec 0.26 sec 1.44⇥ 10�76 sec

49 640 10.06 0.01 n/a n/a 326.25 sec 1.159⇥ 10�12 sec

Table 3. Speeds of Comparison Trials between Magma, Singular and ANFtoCNF-MiniSAT

6 Previous Work

The exploration of SAT-solver enabled cryptanalysis is often said to have begun with Massacci and
Marraro [21, 20, 22, 16], who attempted cryptanalysis of DES with the SAT-solvers Tableau, Sato,
and Rel-SAT. This was successful to three rounds. However, this was a head-on approach, encoding
cryptographic properties directly as CNF formulae. A more algebraic approach has recently been
published by Courtois and Bard [6], which breaks six rounds (of sixteen). Fiorini, Martinelli and
Massacci have also explored forging an RSA signature by encoding modular root finding as a SAT
problem in [15].

The application of SAT-solvers to the cryptanalysis of hash-functions, or more correctly, collision
search, began with [18] which showed how to convert hash-theoretic security objectives into logical
formulae. The paper [23], by Mironov and Zhang, continued the exploration of hash functions via
SAT-solvers by finding collisions in MD4 and MD5.

The authors believe this is the first successful application of SAT-solvers to solving systems of
equations over finite fields. However, the approach was mentioned in [3], upon the suggestion of
Jacques Stern.



7 Conclusions

The problem of solving a multivariate system of equations over GF (2) is important to cryptography.
We demonstrate that it is possible to e�ciently covert such a problem into a CNF-SAT problem.
We further demonstrate that solving such a CNF-SAT problem on a SAT-solver is faster than
brute force for sparse cases. On most problems of even intermediate size, Gröbner Bases oriented
methods, like Magma and Singular, crash due to a lack of su�cient memory. Our method, on the
other hand, requires little more memory than that required to store the problem. In examples where
Magma and Singular do not crash, these tools are faster than our methods. However, our method
is still much faster than brute force approximately when �  1/100.

An important consequence of these early experiments is that attention will have to be given to
the sparsity of systems of equations that arise in cryptanalysis. The Data Encryption Standard [6]
has already been attacked with this tool. The methods in this paper achieve attacks on 6 rounds,
whereas more direct SAT-solver methods only achieved 3 rounds. As another example, the provably
secure stream cipher QUAD is based on the hardness of the MQ problem, and uses the dense case
[2]. However, if the sparse case were to be used (as a proposal to speed-up the stream cipher
suggests), then it might be vulnerable to an attack via this method.
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A Cubic Systems

While no experiments were performed on random cubic systems, the cryptanalysis of the first 6-
rounds of the Data Encryption Standard, by Courtois and Bard [6], was carried out using the
method in this paper. It was much faster than brute force, however, it was necessary to perform a
great deal of human-powered preprocessing. See that paper for details.

In particular, the conversion for cubics will proceed identically to quadratics. The number
of possible monomials is also much higher. This means our assumption that every monomial “is
probably present” might not be true and the expected length of each equation is longer.

There are
�
n

3

�
⇠ n

3
/6 cubic monomials possible, each requiring 1 dummy variable, 4 clauses

of total length 10. There are as before
�
n

2

�
⇠ n

2
/2 quadratic monomials possible, each requiring 1

dummy variable, 3 clauses of total length 7. The total number of monomials possible is thus
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The expected length of any polynomial is �M ⇠ �n

3
/6. Taking cutting by four as an example,

this would require ⇠ �n

3
/12 dummy variables, and ⇠ (2/3)�n

3 clauses of total length ⇠ (8/3)�n

3,
for each of the m equations. Therefore, so long as � is !(cn), then the cost of converting the
monomials is negligible compared to that of representing the sums, as before.

Cutting Number Variables Clauses Length

Cut by 3 ⇠ cn4�/6 ⇠ (2/3)cn4� ⇠ 2cn4�
Cut by 4 ⇠ cn4�/12 ⇠ (2/3)cn4� ⇠ (8/3)cn4�
Cut by 5 ⇠ cn4�/18 ⇠ (8/9)cn4� ⇠ (40/9)cn4�
Cut by 6 ⇠ cn4�/24 ⇠ (4/3)cn4� ⇠ 8cn4�
Cut by 7 ⇠ cn4�/30 ⇠ (32/15)cn4� ⇠ (224/15)cn4�
Cut by 8 ⇠ cn4�/36 ⇠ (32/9)cn4� ⇠ (256/9)cn4�

Table 4. CNF Expression Di�culty Measures for Cubic Systems, by Cutting Number

An interesting note is that as explained earlier, any polynomial system of equations in GF (2)
can be rewritten as a (larger) quadratic system. It is unclear if it is better to convert a cubic system
via this method, and then construct a CNF-SAT problem, or construct the CNF-SAT problem
directly from the cubic system of equations.


