
Theoretical Computer Science 676 (2017) 52–68

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Solving polynomial systems with noise over F2: Revisited

Zhenyu Huang a,b,∗, Dongdai Lin a

a SKLOIS, Institute of Information Engineering, CAS, Beijing 100093, China
b KLMM, Academy of Mathematics and Systems Science, CAS, Beijing 100190, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 July 2016
Received in revised form 9 February 2017
Accepted 13 March 2017
Available online 18 March 2017
Communicated by G. Persiano

Keywords:
Boolean polynomial system with noise
Max-PoSSo
ISBS method
Cold Boot attack
Serpent

Solving polynomial systems with noise over F2 is a fundamental problem in computer
science, especially in cryptanalysis. ISBS is a new method for solving this problem based
on the idea of incrementally solving the noisy polynomial systems and backtracking all
the possible noises, and it has better performance than other methods in solving some
problems generated from cryptanalysis. In this paper, some further researches on ISBS are
presented. The structure and size of the search tree of ISBS are theoretically analyzed.
Then two major improvements, artificial noise-bound strategy and s-direction approach,
are proposed. Based on these improvements, a modified ISBS algorithm is implemented,
and the experiments of solving the Cold Boot key recovery problems of the block cipher
Serpent with symmetric noise, show that this modified algorithm is more efficient than
the original one.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Solving polynomial systems with noise over F2, which is called as the Max-PoSSo problem over F2, is the problem
of finding a solution of a given Boolean polynomial system, such that the solution can satisfy the maximum number of
polynomials. It is a fundamental problem in several areas of cryptography, such as algebraic attacks, side-channel attacks
and the cryptanalysis of LPN/LWE-based schemes. For example, in the Cold Boot attack, which is a kind of side-channel
attack, one can recover the initial key of a block cipher from noisy round keys by solving a Max-PoSSo problem [1,9]. In the
computation complexity field, this problem is also significant and is known as the maximum equation satisfying problem
[8,13]. In the general case, this problem is NP-hard even when the polynomials are linear.

In this paper, we focus on the Max-PoSSo problems with all input polynomials being nonlinear. Obviously, Max-PoSSo
problems over F2 are analogous to the well-known Max-SAT problems, thus a natural way to solve a Max-PoSSo problem
is converting it into a Max-SAT problem and then solving it with a Max-SAT solver. However, this method has a disad-
vantages that the original algebraic structure is destroyed after the conversion. In [1], the authors proposed a method to
convert Max-PoSSo problems into mixed integer programming (MIP) problems, and then solved it with a MIP solver SCIP.
Essentially, these two kinds of methods are all based on the idea of searching all the possible values of variables, and their
differences are the techniques of pruning redundant branches of the search tree.

Since Max-PoSSo is a NP-hard problem, it is natural to consider whether there is a polynomial-time approximate algo-
rithm with a large approximate ratio r. In [13], Zhao and Gao gave a negative result that when the degree of polynomials

* Corresponding author at: SKLOIS, Institute of Information Engineering, CAS, Beijing 100093, China.
E-mail addresses: huangzhenyu@iie.ac.cn (Z. Huang), ddlin@iie.ac.cn (D. Lin).

http://dx.doi.org/10.1016/j.tcs.2017.03.005
0304-3975/© 2017 Elsevier B.V. All rights reserved.

Z. Huang, D. Lin / Theoretical Computer Science 676 (2017) 52–68 53

are 2 and the number of variables is large, the maximal approximation ratio that can be achieved in polynomial time
for Max-PoSSo over F2 is 1/2. In practical computation, since Max-PoSSo problems can be converted to Max-SAT or MIP
problems, approximate algorithms for solving these problems can be used to solve Max-PoSSo. Like the above deterministic
algorithms, these approximate algorithm also focus on the possible values of variables, not the possible values of polynomi-
als.

In [11], a new method called ISBS for solving Max-PoSSo problems over F2 was proposed. The basic idea of ISBS is
searching the values of polynomials, which is equivalent to searching all the possible noises. Precisely speaking, given
a noisy polynomial system { f1, f2, . . . , fm}, one tries to solve polynomial systems { f1 + e2, f2 + e2, . . . , fm + em}, where
(e1, e2, . . . , em) can be equal to (0, 0, . . . , 0), (1, 0, . . . , 0), . . . , (1, 1, . . . , 1). Then, the solution of a system { f1 + e2, f2 +
e2, . . . , fm + em} with (e1, e2, . . . , em) having the smallest Hamming weight is the solution of the Max-PoSSo problem. In
the ISBS method, the above basic idea is combined with the ideas of incrementally solving { f1 + e1, f2 + e2, . . . , fm + em}
and searching all possible (e1, e2, . . . , em) with backtracking. By this way, one can prune a lot of search branches. The
experimental results of [11] showed that compared with SCIP, ISBS has better performances in solving the Max-PoSSo
problems generated from the Cold Boot Key recovery problems of block ciphers AES [12] and Serpent [2].

In ISBS, the incrementally solving process can be executed by running some polynomial system solving algorithm, such as
the Characteristic Set algorithms [4,7] and the Gröbner Basis algorithms [5,6]. We can see this solving process as a black-box
process, and in this case, a major factor that influences the complexity of ISBS is the number of branches in the search tree
with respect to the noises (e1, e2, . . . , em). The motivation of this paper is to theoretically analyze the number of branches
in this tree, then show the relation of the basic properties of the input system to this number of branches. Furthermore,
based on the theoretical analysis, we want to develop some techniques which can further decrease the number of branches,
hence improve the efficiency of ISBS. The main contributions of this paper are as follows.

We give some theoretical analysis of the structure of the search trees of ISBS. We prove that the search tree of ISBS is
equivalent to the intersection of two binary tree Tquasi and Tnw , where the number of branches in Tquasi is determined
by the randomness of the input system, while the number of branches in Tnw is determined by the number of the input
polynomials and the bound of the Hamming weight of the possible noises.

For general polynomial systems, we propose the artificial noise-bound strategy to decrease the size of Tnw . In this strat-
egy, we artificially bound the Hamming weight of the possible noises, and gradually increase this bound until we find
the optimal solution. Moreover, when the input polynomial system satisfies m = sn, where m is the number of polyno-
mials, n is the number of variables and s ≥ 2 is an integer, we propose the s-direction approach, whose idea is dividing
the input polynomials into s parts and searching the possible noises of different parts with smaller bounds, to decrease
the number of branches in the search tree. We prove that this approach is more efficient than the original ISBS, and
show that in which way of setting the smaller bounds and dividing the polynomial system, this approach can be more
efficient.

Finally, we implement a modified ISBS algorithm by applying the above improvements, and test it by solving some Cold
Boot key recovery problems of the block cipher Serpent. We compare our experimental results with those in [1,11], and the
experimental results demonstrate that the efficiency of ISBS is improved significantly by our modification.

The rest of this paper is organized as follows. In Section 2, we introduce the Max-PoSSo problem and the ISBS method.
In Section 3, the number of branches in the search tree of ISBS is analyzed. In Section 4, the s-direction approach for solving
the problems with m = sn is proposed. In Section 5, we show some experimental results. In Section 6, the conclusions are
presented.

2. Solving Max-PoSSo problems over FFF2

Let F2 be the finite field with two elements {0, 1}, and {x1, x2, . . . , xn} be a variable set. Consider the Boolean polynomial
ring R2 = F2[x1, x2, . . . , xn]/⟨x2

1 + x1, x2
2 + x2, . . . , x2

n + xn⟩. An element in R2 is called a Boolean polynomial.
Given a Boolean polynomial system P = { f1, . . . , fm} ⊂ R2[x1, . . . , xn]. The polynomial system solving (PoSSo) problem

over F2 is finding a solution (x1, ..., xn) ∈ Fn
2 such that ∀ f i ∈ P, we have f i(x1, ..., xn) = 0. The set consisting of all the

solutions of the PoSSo problem is called the zero set of P.
The Max-PoSSo problem over F2 is defined as below.

Max-PoSSo: Let P = { f1, . . . , fm} ⊂ R2[x1, . . . , xn] be a Boolean polynomial system. Find a point (x1, . . . , xn) ∈ Fn
2 such that {i ∈

N| f i(x1, . . . , xn) = 0, f i ∈ P} has maximal cardinality.

The name “Max-PoSSo” was first proposed in [1]. In the computational complexity field, this problem is sometimes called
the maximum equation satisfying problem [8,13]. Obviously, Max-PoSSo is at least as hard as PoSSo. Moreover, whether the
polynomials in P are linear or not, Max-PoSSo is an NP-hard problem. Besides Max-PoSSo, in [1], the authors introduced
another variant problem: Partial Weighted Max-PoSSo, in which the solution is constrained by another polynomial system
and it has to maximize a cost function. In this paper we focus on the Max-PoSSo problem, since it is a more fundamen-
tal problem and study this problem can help us illustrate the major properties of these similar problems. Moreover, the
techniques used in solving Max-PoSSo can be simply applied into solving Partial Weighted Max-PoSSo and other similar
problems.

54 Z. Huang, D. Lin / Theoretical Computer Science 676 (2017) 52–68

In the following paragraphs of this paper, unless otherwise stated, the problems we discuss are all over F2 , and we use
n to denote the number of variables and m to denote the number of input polynomials.

Before introducing ISBS method, we first discuss the problem of recovering the true solutions of Max-PoSSo problems
originated from cryptanalysis in the following subsection.

2.1. The success rate of recovering the true solution

In cryptanalysis, the input polynomial system P of a Max-PoSSo problem is always originated from another system P0
which always has a solution. Moreover, the difference between P0 and P is that t polynomials of them have different
constant terms. If |P0| = |P| = m, the ratio r = t/m is called the error rate of P. The solution of P0 is called the true solution
of P.

Actually, in cryptanalysis, the major motivation of solving a Max-PoSSo problem is to recover the true solution which is
the sensitive information in most cases. Sometimes when the error rate r is big, the solution of the Max-PoSSo problem may
not be the true solution of the input polynomial system. Therefore, we want to know in what cases we have big probability
of recovering the true solution, and how this probability changes when m, n and r change. Let P be the probability of
recovering the true solution by solving a Max-PoSSo problem, and call it the success rate. Now we present some results
about P under the following assumption.

Given a polynomial system, P = { f1(x1, x2, . . . , xn), . . . , fm(x1, x2, . . . , xn)} with m ≥ n, we define a map Sm : Fn
2 → Fm

2 ,
with Sm(x) = (f1(x), f2(x), . . . , fm(x)). Assume for any x, the probability of Sm(x) being equal to each element in Fm

2 is the
same. Moreover, for any x1 ≠ x2, Sm(x1) and Sm(x2) have independent distribution. Obviously, this assumption is reasonable
when each f i is random and balanced. Then we have the following proposition about the success rate.

Proposition 1. Let P be the input system of a Max-PoSSo problem with error rate r. Suppose P has n variables and m polynomials, and
the above assumption about the distribution of Sm(x) is valid. Then the success rate P is equal to (1 −

∑rm
i=0

(m
i

)
−1

2m)2n
.

Proof. Suppose P is generated from P0. Then t polynomials of P and P0 have different constant terms. We denote the
differences between the elements of P and P0 by e′

1, e
′
2, . . . , e

′
m , then e′

i = 0 or 1 for 1 ≤ i ≤ m. The solution of the Max-PoSSo
problem about P is the true solution when the following condition is satisfied:

• For any vector (e1, e2, . . . , em) ∈ Fm
2 such that its Hamming weight w ≤ t = mr and (e1, e2, . . . , em) ̸= (e′

1, e
′
2, . . . , e

′
m),

polynomials f1 + e1, f2 + e2, . . . , fm + em don’t have common solutions, which means for any point x0 ∈ Fn
2,

(f1(x0), f2(x0) . . . , fm(x0)) ̸= (e1, e2, . . . , em).

Therefore, the number of vectors that satisfy the above condition, is
∑t

i=0
(m

i

)
− 1. By the assumption about the distribution

of Sm , we can deduce that for any point x0, the probability of Sm(x0) being not equal to these vectors is 1 −
∑t

i=0
(m

i

)
−1

2m .
Since there are 2n points in Fn

2, then the success rate P , which is equal to the probability of the above condition being
satisfied, is (1 −

∑mr
i=0

(m
i

)
−1

2m)2n
. ✷

Proposition 2. Let r ≤ 1/2 be a fixed real number and 1/r be a positive integer. For any integers m2 > m1 , we have
∑m2r

i=0

(m2
i

)

2m2
≤

∑m1r
i=0

(m1
i

)

2m1
.

Moreover, the equality holds when r = 1/2.

Proof. The completely strict proof of this proposition is complicated and is given in Appendix. Here we present an approx-
imate proof by the normal distribution theory.

By the central limit theorem, we know that when m is large enough,
∑mr

i=0
(m

i

)

2m is approximately equal to

1√
mπ/2

mr∫

−∞
e
− 1

2 (t−m/2√
m/4

)2

dt = 1√
2π

mr−m/2√
m/4∫

−∞
e− 1

2 s2
ds

Thus, it is sufficient to prove m1r−m1/2√
m1/4

≥ m2r−m2/2√
m2/4

⇔ (
√

m1 − √
m2)(2r − 1) ≥ 0. Obviously, when r ≤ 1/2, this inequality

holds, and when r = 1/2, the equality holds. ✷

From the above proposition, we can deduce that when n, r are fixed,
∑mr

i=0
(m

i

)
−1

2m decreases with m increasing, which
means P increase with m increasing. Similarly, we can prove that when n, m are fixed, P decreases with r increasing.

Z. Huang, D. Lin / Theoretical Computer Science 676 (2017) 52–68 55

Actually, for most problems in cryptanalysis, r and n are always fixed, such as the Cold Boot key recovery problem introduced
in Section 5, and the probabilistic algebraic attacks on LFSR-based stream ciphers [3]. It means that by increasing the number
of input polynomials, we can increase the success rate of recovering the true solution.

2.2. The Incremental Solving and Backtracking Search (ISBS) method

Now we introduce the ISBS method for solving Max-PoSSo problems [11]. As we introduced in Section 1, the principle
idea of ISBS is searching the values of polynomials. Let’s show it more specifically.

Given a noisy polynomial set P = { f1, f2, . . . , fm}, for every vector E = (e1, e2, . . . , em) ∈ Fm
2 , we can solve the polyno-

mial system { f1 + e1, f2 + e2, . . . , fm + em} by some algebraic methods. Hence, we can exhaustively search all such E in
the order of increasing Hamming weight and solve the PoSSo problem of the corresponding polynomial system for each E .
For some E , if the corresponding PoSSo problem has a solution, then this solution is the solution of the Max-PoSSo prob-
lem.

The above approach uses the most common way to search E , and obviously there are a lot of redundant computations.
For example, if { f1 + e′

1, f2 + e′
2, . . . , fk + e′

k} has no solution for some fixed (e′
1, e

′
2, . . . , e

′
k), we don’t need to solve any

system with the form { f1 + e′
1, f2 + e′

2, . . . , fk + e′
k, fk+1 + ek+1, . . . , fm + em}, since it will always be a contradiction system.

Therefore, in order to avoid this kind of redundant computations, ISBS combines the incremental solving method and the
backtracking search method with the above idea.

First let’s introduce the incremental solving method. Given a polynomial system P, we can solve it by some algebraic
methods, such as the Characteristic Set (CS) method [4,7] and the Gröbner Basis method [5,6].1 In the following, we see
this polynomial system solving process as a black-box process. If the input of this black-box is a polynomial system P, we
denote its output results as Result(P), which is called the result set of P. When the polynomial system P has no solution,
we set Result(P) to be {1}. According to the theories of the CS method and the Gröbner Basis, all the solutions of P
can be derived easily from Result(P). We remind the reader that, for different methods, Result(P) can be different. For
example, if we use the CS method to solve P, Result(P) = ∪iAi is the union of a group of triangular sets (a triangular set
Ai is a polynomial set whose solutions can be easily achieved, and its precise definition will be found in [7]). If we use the
Gröbner Basis method to solve P, Result(P) is the Gröbner Basis of ideal ⟨P⟩.

Now we show that given Result(P) and a polynomial g , Result({Result(P), g}) can be achieved. For example,
for the CS method, we need to compute each Result({Ai, g}) and output the union of them. For the Gröbner Basis
method, we need to compute the Gröbner Basis of the ideal generated by {Ai , g}. Therefore, given a polynomial system
P = { f1, f2, . . . , fm}, Result(P) can be achieved by incrementally computing

Result({ f1}),Result({Result({ f1}), f2}), . . . ,

and this is the incremental solving method.
Now let’s present the major processes of ISBS.

(i) We incrementally solve { f1 +e1, f2 +e2, . . . , f i +ei} for i from 1 to m with each ei = 0. If Result({ f1, f2, . . . , f i}) = {1}
for some i, we flip ei to 1 and continue solving the remaining polynomials based on Result({ f1, f2, . . . , f i + 1}). At
last, we will obtain a candidate Result({ f1 + e1, f2 + e2, . . . , fm + em}) where (e1, . . . , em) is equal to some fixed
(e′

1, . . . , e
′
m). We set ubound to be the u0 − 1, where u0 is the Hamming weight of (e′

1, . . . , e
′
m), and set the backtracking

index k to be m.
(ii) In order to obtain a better candidate, we search all the possible values of (e1, . . . , em) with backtracking based on

the value (e′
1, . . . , e

′
m). That is for i from k to 1 we find the first e′

i such that ei = 0 and the Hamming weight
of (e1, . . . , ei−1, 1) is less than ubound , then similarly as step (i) we try to incrementally solve f i+1, . . . , fm based on
Result({ f1 + e′

1, . . . , f i + 1}). If we find a better candidate Result({ f1 + e′
1, f2 + e′

2, . . . , f i + 1, f i+1 + e′′
i+1, . . . , fm +

e′′
m}), such that u, the Hamming weight of (e′

1, e′
2, . . . , 1, e′′

i+1, . . . , e
′′
m), is not bigger than ubound , then we set k to be

m, replace (e′
1, . . . , e

′
m) with (e′

1, . . . , e
′
i−1, 1, e′′

i+1, . . . , e
′′
m), replace ubound with u, and do step (ii) again. Otherwise, set

k = i − 1 and do step (ii) again if k > 0.
(iii) Finally, we have searched all the possible (e1, . . . , em) and obtain the optimal solution.

In the Algorithm 1, we present the steps of ISBS method specifically. In this algorithm, a vector (e1, e2, . . . , es) ∈ Fs
2 with

s ≤ m is called a noise vector. Moreover, we call the Hamming weight of a noise vector a noise weight and a bound of the
noise weight a noise-bound. For the proof of the correctness and termination of ISBS, the reader is referred to [11].

1 Note that SAT-solvers are not suitable for incremental solving, since it cannot represent a lot of solutions with a simple form.

56 Z. Huang, D. Lin / Theoretical Computer Science 676 (2017) 52–68

Algorithm 1: ISBS algorithm.
input : A polynomial system P = { f1, f2, . . . , fm}.
output: (x1, . . . , xn) ∈ Fn

2 s.t. {i ∈ N| f i(x1, . . . , xn) = 0, f i ∈ P} has maximal cardinality.

1 Compute Candidate(P, ∅, m, 0);
2 Let t , u, {Q0, Q1, . . . , Qm} and E = (e1, e2, . . . , em) be the corresponding outputs

of Candidate(P, ∅, m, 0); /* Here t is always equal to m */
3 ubound ← u − 1, S ← Qm;
4 Let S1 be the output of Backtracking(P, E, {Q0, Q1, . . . , Qm}, ubound, u);
5 if S1 ≠ ∅ then S ← S1;
6 Get (x1, . . . , xn) from S and return (x1, . . . , xn);

Function: Candidate.
input : P = { f s+1, f s+2, . . . , fm}: a polynomial set,

Result(R) : the result set of a polynomial set R,
ubound: a noise-bound,
u: the noise weight of (e1, . . . , es).

output: t: an index number,
u: the noise weight of (e1, . . . , es+t),
QS = {Qs, Qs+1, . . . , Qs+t}: a sequence of result sets,
E = (es+1, es+2, . . . , es+t).

1 Qs ← Result(R), t ← m − s;
2 for i from s + 1 to m do
3 Pi ← {Qi−1, f i}, and compute Result(Pi);
4 if Result(Pi) = {1} then /* In this case, Result(Qi−1, f i + 1) = Result(Qi−1) */
5 Qi ← Qi−1, ei ← 1, u ← u + 1;
6 if u > ubound then
7 t ← i − s, and break;

8 else if Result(Pi) and Qi−1 have the same zero set then /* Result(Qi−1, f i + 1) = {1} */
9 Qi ← Qi−1, ei ← 0;

10 else
11 Qi ← Result(Pi), ei ← 0;

12 return t , u, {Qs, Qs+1, . . . , Qs+t}, (es+1, es+2, . . . , es+t);

Function: Backtracking.
input : P = { f1, f2, . . . , fm}: a polynomial set,

E = (e1, e2, . . . , em): a noise vector,
{Q0, Q1, . . . , Qm}: a sequence of result sets
ubound: a noise-bound;
u: the noise weight of E;

output: A result set S.

1 k ← m, S ← ∅; /* k is the backtracking index */
2 while k ≥ 1 do
3 if ek = 0, Qk ≠ Qk−1 and u + 1 ≤ ubound then
4 Pk ← {Qk−1, fk + 1} and compute Result(Pk);
5 ek ← 1, u ← u + 1;
6 Qk ← Result(Pk);
7 Set t , u, {Qk, Qk+1, . . . , Qk+t}, (ek+1, . . . , ek+t) to be the output of Candidate({ fk+1, fk+2, . . . , fm}, Qk, ubound, u);
8 k ← k + t;
9 if u ≤ ubound then /* In this case, k = m */

10 S ← Qm , ubound ← u − 1;

11 else
12 u ← u − ek , k ← k − 1;

13 return S.

Remark 1. This version of ISBS is slightly different from the version in [11]. We add the comparisons of the zero sets of
Result(Pi) and Qi−1 (Step 8) in Candidate. When this condition is true, we always have Result(Qi−1, f i + 1) = {1}.
Thus, in this case we don’t need to check whether Result(Qi−1, f i + 1) is equal to {1} in Backtracking (that is what

Z. Huang, D. Lin / Theoretical Computer Science 676 (2017) 52–68 57

the algorithm in [11] did). Therefore, we add a condition Qk ≠ Qk−1 in Step 3 of Backtracking to verify whether this
case happens.

Note that checking whether two result sets Result(Pi) and Qi−1 have the same zero set is very easy, thus the cost
is much less than that of solving {Qi−1, f i + 1}. For example, when we use the characteristic set method as the incre-
mental solving tool, the number of solutions in the result set can be counted easily, thus we only need to check whether
Result(Pi) and Qi−1 have the same number of solutions.

3. The search tree of ISBS

It is easy to see that, ISBS can be efficient only when the cost of computing Result is small for the input system, which
means incremental solving process can be executed fast. In this case, a major factor that determines the complexity of the
algorithm is the size of the backtracking search tree. In this section, we will present theoretical analysis of the number of
the branches in this tree, and show how the properties of the input systems effect this number.

First of all, we introduce some notations and terminologies about the binary trees used in this paper. For a binary tree,
when we say a path in this tree, we mean a node sequence N0, N1, . . . , Nk , where N0 is the root node and Ni is a child
node of Ni−1. Moreover, we denote this path by N0 → N1 → · · · → Nk . A path from the root node to a leaf node is called a
branch of the tree. For a binary tree T, the number of its branches is denoted by |T|. For two binary trees T1 and T2, their
intersection, denoted by T1 ∩ T2, is the tree whose nodes are the common nodes of these two trees.

Now we strictly define the search tree of ISBS. This binary tree can be generated as the following procedures. First, let
the root node of the tree be the empty set, and use a pointer M pointing to the root node. Then run the algorithm and
generate the new nodes by the following operations.

• In Candidate, after each time we set the value of some ei , we generate a new node f i + ei , and draw an edge from
the node pointed by M to this new node, then let M point to this new node.

• In Backtracking, after each time we decrease the backtracking index k by 1, we let M point to the parent node of
the node pointed by M currently. Besides, after we set the value of some ei , we generate a new node f i + ei , and draw
an edge from the node pointed by M to this new node, then let M point to this new node.

In this way, we can generate a binary tree, denoted by TI S B S , with depth m (the depth of the root node is set to
be 0) after running ISBS. Note that, in ISBS, ei is evaluated if and only if Result has been computed for one time.
Therefore, the number of nodes in TI S B S is equal to the number of computing Result. It is easy to see that a path
f1 + e1 → f2 + e2 → · · · → fk + ek with length k in TI S B S is one-to-one corresponding to the process of incrementally
solving the polynomial system { f1 + e1, f2 + e2, . . . , fk + ek} in ISBS.

Since the depth of TI S B S is m, |TI S B S | is roughly bounded by 2m . However, this search tree is not a perfect binary tree,
since a lot of subtrees are pruned in the following four cases:

(1) Result(Pi) = {1} in Step 4 of Candidate.
(2) Result(Pi) and Qi−1 have the same zero set in Step 8 of Candidate.
(3) u > ubound in Step 6 of Candidate.
(4) u + 1 > ubound in Step 3 of Backtracking.

From the above four cases, we can conclude two major factors which influence the size of the search tree. Cases (1) and (2)
are corresponding to the first one, which is the randomness of the input system. Cases (3) and (4) are corresponding to the
second one, which is the value of the noise-bound.

First, we analyze the effect of the first factor. To this end, we will consider a bigger tree, which is generated from ISBS
with the following modifications. That is we don’t compare the noise weight with ubound in Candidate and Backtrack-
ing. Instead, we achieve the solutions of the polynomial systems with all possible noise weight, and finally output the
solution of the system whose noise weight is lowest. We denote this modified algorithm by ISBS1. We can generate a search
tree of ISBS1 similar as TI S B S , and we call this tree the quasi search tree of ISBS, and denote it as Tquasi . It is easy to see
that for each path p in TI S B S with length k, we can find a path p′ in Tquasi with length at least k, such that the first
k nodes of p and p′ are the same. This means TI S B S is a truncated subtree of Tquasi . We have the following proposition
about Tquasi .

Proposition 3. Let f1, f2, . . . , fm be the input of ISBS. We denote the number of paths with length k in Tquasi by Nk, for 1 ≤ k ≤ m.
Moreover, we define a map Sk : Fn

2 → Fk
2 , with Sk(x) = (f1(x), f2(x), . . . , fk(x)). Then, we have

(a) All the branches in Tquasi have depth m.
(b) Nk = |Im(Sk)|, for any 1 ≤ k ≤ m.

58 Z. Huang, D. Lin / Theoretical Computer Science 676 (2017) 52–68

Proof. (a) Note that a branch ends after Candidate terminated, which is equivalent to the loop of Step 2 terminated.
This loop terminates before i = m, only when u > ubound in Step 6. However, for Tquasi , the noise-bound is not used, hence
Candidate terminates after it has dealt with fm , which implies all branches in Tquasi have length m.

(b) For a path p : f1 +e1 → f2 +e2 → · · · → fk +ek , suppose we have Result({ f1 +e1, f2 +e2, . . . , fk +ek}) = {1}. Then
we can find a constant s ≤ k such that Result({ f1 +e1, f2 +e2, . . . , f s +es}) = {1} and Result({ f1 +e1, f2 +e2, . . . , f s−1 +
es−1}) ̸= {1}.

• If es = 0, then the condition in Step 4 of candidate holds, we will set ei to be 1, which means we will generate the
node f s + 1 instead of the node f s , then the path p is pruned at the node f s , a contradiction.

• If es = 1, then Result({ f1 + e1, f2 + e2, . . . , f s−1 + es−1}) = Result({ f1 + e1, f2 + e2, . . . , f s−1 + es−1, f s}). Obviously,
node f s + 1 can only be generated in Step 5 of Backtracking. However, since Result({ f1 + e1, f2 + e2, . . . , f s−1 +
es−1) = Result({ f1 + e1, f2 + e2, . . . , f s−1 + es−1, f s}), the condition in Step 3 of Backtracking doesn’t hold, which
means Step 5 will not be executed, a contradiction.

Therefore, we have Result({ f1 + e1, f2 + e2, . . . , fk + ek}) ̸= {1} which means (e1, e2, . . . , ek) ∈ Im(Sk). Then, we can build
a map M which maps a path f1 +e1 → f2 +e2 → · · · → fk +ek to (e1, e2, . . . , ek) ∈ Im(Sk). Obviously, M is an injection. For
any (e1, e2, . . . , ek) ∈ Im(Sk), from the definition of Sk , we know that f1 + e1, f2 + e2, . . . , fk + ek have common solutions,
which means Result({ f1 + e1, f2 + e2, . . . , fk + ek}) ̸= {1}. It is easy to see that the path f1 + e1 → f2 + e2 → · · · → fk + ek
is in Tquasi , hence M is a surjection. In summary, M is a bijection, thus Nk = |Im(Sk)|. ✷

The above proposition shows that |Tquasi | is equal to |Im(Sm)|, which is bounded by 2n . |Im(Sm)| is an essential property
of a polynomial system, and changing the order of f i will not change the value of |Im(Sm)|, hence not change |Tquasi|. The
maximal value of |Im(Sm)| is 2n , which can be reached when the randomness of the input systems is good enough. The
above analysis implies that in ISBS, we can prune all branches which are redundant because of the bad randomness of the
input system.

Remark 2. For ISBS1, from Proposition 3, we can deduce that the number of computing Result is equal to
∑m

i=1 |Im(Si)|,
where |Im(S1)| ≤ |Im(S2)| ≤ · · · ≤ |Im(Sm)|. Obviously, changing the order of f i will change the value of |Im(Si)|, for 1 ≤ i ≤
m − 1. Unfortunately, it is too hard to estimate the value of |Im(Si)|, hence we cannot theoretically find a way of sorting f i
such that

∑m
i=1 |Im(Si)| reaches its minimal value. However, the complexity of incrementally solving a polynomial system

is highly relevant to the order of the polynomials, which means the order of f i can effect the complexity of computing
Result, hence we can sort f i such that the incremental solving processes are more efficient. A natural idea of sorting f i
is putting the “easy” ones before the “hard” ones. Here the “hardness” of a polynomial can be defined by different indexes
for different polynomial system solving methods.

Now we consider the influence of the noise-bound. Given a noise-bound ubound , we construct a binary tree Tnw from
a perfect binary tree T with depth m. That is in T we keep the branches f1 + e1 → f2 + e2 → · · · → fm + em , such that
e1 + e2 + · · · + em ≤ ubound , and pruned other branches. Obviously, we have |Tnw | = ∑u

i=0
(m

i

)
. Then, we have the following

theorem.

Theorem 4. Assume ISBS is executed under noise-bound ubound, and this bound is not changed after ISBS terminated. Suppose T0 =
Tquasi ∩ Tnw , and T1 is a binary tree generated from T0 by appending a child node fk+1 + 1 to the end of each branch with depth
k < m in T0 . Then we have:

(1) TI S B S = T1 .
(2) |TI S B S | = |Tquasi ∩ Tnw |.

Proof. (1) First we prove TI S B S ⊂ T1. Note that in Candidate, in any one of the three cases corresponding to Step 4,
Step 8 and Step 10, es+1 will always be evaluated, which means at least one new node will be generated in TI S B S .

• Consider a branch p : f1 + e1 → f2 + e2 → · · · → fk + ek with depth k < m in TI S B S . If ek = 0, the value of ek must
be set in Candidate at Step 9 or 11. It means that Candidate doesn’t end after evaluating ek , and either node
fk+1 + 1 or node fk will be generated in the following steps, which contradicts to the assumption that fk + ek is a leaf
node. Therefore we have ek = 1. There are two cases that ek is set to be 1. The first case is that in Backtracking
we backtrack to index k and flip the value of ek from 0 to 1. In this case, the condition of Step 3 holds, which means
e1 +e2 +· · ·+ek ≤ ubound , then Candidate will be executed and a child node will be generated, a contradiction. Hence,
ek is set to be 1 in Candidate when Result({ f1 + e1, f2 + e2, . . . , fk}) is equal to {1}. Then, we have e1 + e2 + · · · +
ek > ubound , otherwise, Candidate will not terminate and a child node will be generated. Obviously, e1 + e2 + · · · +
ek−1 ≤ ubound . We can deduce e1 + e2 + · · · + ek−1 = ubound . Hence path p′ : f1 + e1 → f2 + e2 → · · · → fk−1 + ek−1 is in
Tquasi ∩ Tnw . Note that Result({ f1 + e1, f2 + e2, . . . , fk−1 + ek−1, fk}) = {1}, which means path f1 + e1 → f2 + e2 →

Z. Huang, D. Lin / Theoretical Computer Science 676 (2017) 52–68 59

· · · → fk−1 +ek−1 → fk is not in Tquasi , and path f1 +e1 → f2 +e2 → · · · → fk−1 +ek−1 → fk +1 is in Tquasi . Therefore,
in Tquasi ∩ Tnw , node fk−1 + ek=1 of p′ is a leaf node is a branch which implies p′ is a branch with depth less than m.
Therefore, p is in T1.

• Consider a branch p : f1 + e1 → f2 + e2 → . . . → fm + em in TI S B S . If e1 + e2 + · · · + em ≤ ubound , then it is obvious that
p ∈ Tquasi ∩ Tnw . Since the depth of p is m, we have p ∈ T1. Note that, there is a case that e1 + e2 + · · · + em > ubound .
That is em is set to be 1 in Candidate. Similarly as the proof above, we have e1 + e2 + · · · + em−1 = ubound and
Result({ f1 + e1, f2 + e2, . . . , fm−1 + em−1, fm}) = {1}, which means f1 + e1 → f2 + e2 → . . . → fm−1 + em−1 is a
branch of Tquasi ∩ Tnw , thus p ∈ T1.

Now we prove T1 ⊂ TI S B S . Let p : f1 + e1 → f2 + e2 → · · · → fk + ek be a branch in T1.

• If ek = 0, we have k = m, since the branches in T1 with depth less than m have a leaf node with the form fk + 1. Then
p ∈ Tquasi and e1 + e2 + · · · + ek ≤ ubound , hence p ∈ TI S B S .

• Consider the case of ek = 1. If f1 + e1 → f2 + e2 → · · · → fk−1 + ek−1 is not a branch in Tquasi ∩ Tnw , then p is in
Tquasi ∩ Tnw , hence in TI S B S . Assume p′ : f1 + e1 → f2 + e2 → · · · → fk−1 + ek−1 is a branch in Tquasi ∩ Tnw , hence is a
path in TI S B S . If e1 + e2 + · · ·+ ek−1 < ubound , then e1 + e2 + · · ·+ ek−1 + 1 ≤ ubound . Since either Result({ f1 + e1, f2 +
e2, . . . , fk−1 +ek−1, fk}) ̸= {1} or Result({ f1 +e1, f2 +e2, . . . , fk−1 +ek−1, fk +1}) ̸= {1}, we have either path f1 +e1 →
f2 + e2 → · · · → fk−1 + ek−1 → fk or path f1 + e1 → f2 + e2 → · · · → fk−1 + ek−1 → fk + 1 is in Tquasi ∩ Tnw , which
contradicts to the assumption that fk−1 + ek−1 is a leaf node in Tquasi ∩ Tnw . This implies e1 + e2 + · · · + ek−1 = ubound .
Note that path p′ : f1 + e1 → f2 + e2 → · · · → fk−1 + ek → fk is not in Tquasi ∩Tnw . From e1 + e2 +· · ·+ ek + 0 = ubound ,
we can deduce that p′ is not in Tquasi , which means Result({ f1 + e1, f2 + e2, . . . , fk−1 + ek−1, fk}) = {1}. Thus, in
Candidate of ISBS, after computing Result({ f1 + e1, f2 + e2, . . . , fk−1 + ek−1, fk}), ek will be set to be 1, and a leaf
node fk + 1 is generated and appended to the end of p′ in TI S B S . Therefore, p is in TI S B S .

(2) It is easy to see that |Tquasi ∩ Tnw | = |T1|. Thus, from (1), we have |TI S B S | = |T1| = |Tquasi ∩ Tnw |. ✷

The above proof can be illustrated by the following figures. We see TI S B S as a tree generated from Tquasi by the following
operations. Consider a path p : f1 + e1 → f2 + e2 → · · · → fk−1 + ek−1 → fk + 1 in Tquasi , such that

∑k−1
i=1 ei = ubound .

(a) If fk−1 + ek−1 has two child nodes in Tquasi , we pruned the subtree with fk + 1 as the root node. This case can be
illustrated in Fig. 1, where f̄ i means f i + 1.

(b) If fk−1 +ek−1 has a unique child node in Tquasi , we pruned the subtrees whose root nodes are the child nodes of fk +1.
This case can be illustrated in Fig. 2.

In comparison, Tquasi ∩ Tnw can also be seen as a binary tree generated from Tquasi by the pruning operations when the
above cases (a) and (b) occur. For case (a), the pruning operations are the same as TI S B S . For the case (b), we prune the
subtree whose root node is fk + 1. These two kinds of operations can be illustrated in Figs. 3 and 4.

From Theorem 4, we can know that since |Tquasi | is fixed for a given input system, a principle way to decrease |TI S B S |,
is decreasing |Tnw |. Moreover, when m is fixed, the only way to decrease |Tnw | is decreasing ubound . If the noise weight
of the optimal solution is u0, then ISBS can obtain this solution under noise-bound u0, and in this case |Tnw | reaches its
minimal value.

Therefore, a natural way to improve ISBS is constructing a small artificial noise-bound and then executing ISBS under
this bound. If there is no solution under this noise-bound, we can gradually increase the artificial bound by a step size s
until we find the optimal solution. In this way, we can keep the noise-bound and |Tnw | as small as possible. According to
this idea, we present a modified algorithm ISBSb .

· · ·

fk−1

fk f̄k

pruned

Fig. 1. Case (a) of TI S B S .

60 Z. Huang, D. Lin / Theoretical Computer Science 676 (2017) 52–68

· · ·

fk−1

f̄k

fk+1

pruned

f̄k+1

pruned

Fig. 2. Case (b) of TI S B S .

· · ·

fk−1

fk f̄k

pruned

Fig. 3. Case (a) of Tquasi ∩ Tnw .

· · ·

fk−1

f̄k

pruned

Fig. 4. Case (b) of Tquasi ∩ Tnw .

Algorithm 2: ISBSb algorithm.
input : A polynomial system P = { f1, f2, . . . , fm};

A step size s.
output: (x1, . . . , xn) ∈ Fn

2 s.t. {i ∈ N| f i(x1, . . . , xn) = 0, f i ∈ P} has maximal cardinality.

1 Compute Candidate(P, ∅, m, 0);
2 Let t , um , {Q0, Q1, . . . , Qm} and E = (e1, e2, . . . , em) be the corresponding output

of Candidate(P, ∅, m, 0); /* Here t is always equal to m */
3 ubound ← 0, S ← Qm;
4 while ubound < um − 1 do
5 ubound = min(ubound + s, um − 1);
6 Let S1 be the output of Backtracking(P, E, {Q0, Q1, . . . , Qm}, ubound, um);
7 if S1 ≠ ∅ then S ← S1 and break

8 Get (x1, . . . , xn) from S and return (x1, . . . , xn);

Z. Huang, D. Lin / Theoretical Computer Science 676 (2017) 52–68 61

4. Solving Max-PoSSo when m = sn

In this section, we will discuss to solve the Max-PoSSo problems when the input polynomial systems satisfying m = sn,
where s > 1 is an integer. This kind of polynomial systems frequently occur in cryptanalysis problems. For example, for the
Cold Boot key recovery problem introduced in Section 5, we can generate sn polynomials for any integer s. According to the
results in Section 2.1, in most cases, in order to keep a high success rate we need to set s > 1.

The original idea of the approach proposed in this section was roughly introduced in [11] for the case s = 2. However,
why it works and how to optimize the idea were not shown. Thus, in this section we will discuss these problems by
comparing the number of branches in the search trees of different approaches.

From Proposition 3, we know that |Tquasi | = |Im(Sm)|. From our observation, for most polynomial systems generated
from cryptanalysis, we have |Im(Sn)| ≈ |Im(Sm)|. Hence |Tquasi | ≈ |Im(Sn)|. For a binary tree T, denote its truncated subtree
with depth n by T̄. Then, from |Tquasi | ≈ |Im(Sn)| = |T̄quasi |, we can deduce that |Tquasi ∩ Tnw | ≈ |T̄quasi ∩ Tnw |. Moreover, it
is obvious that T̄quasi ∩ Tnw = T̄quasi ∩ T̄nw , thus |TI S B S | = |Tquasi ∩ Tnw | ≈ |T̄quasi ∩ T̄nw |. Consequently, if we can decrease
|T̄nw |, |TI S B S | will decrease. In the following, we will discuss how to decrease |T̄nw |.

4.1. Case m = 2n

In this subsection, we suppose the input system is a polynomial system { f1, f2, . . . , fm} with m = 2n. First we introduce
the following lemma.

Lemma 5. Let u1, u2, u be three non-negative integers, and u1 + u2 ≤ u. For any non-negative integers a, b, such that a + b = u − 1,
we have either u1 ≤ a or u2 ≤ b.

Proof. Suppose u1 > a and u2 > b. Since u1, u2 are integers, we have u1 ≥ a + 1 and u2 ≥ b + 1. Then u ≥ u1 + u2 ≥
a + b + 2 = u + 1, which is a contradiction. ✷

This lemma shows the following fact. We can divide a noise vector E = (e1, . . . , em) into two parts E1 = (e1, . . . , en), E2 =
(en+1, . . . , em). Suppose E has a noise-bound u. Let a, b be two non-negative integers such that a + b = u − 1, then either
E1 has a noise-bound a or E2 has a noise-bound b.

We call the noise-bound of E1 (or E2) a partial noise-bound of E . For a noise vector (e1, . . . , es), we define its partial
noise weight to be the noise weight of (e1, . . . , en) when s > n, or the noise weight of itself when s ≤ n. Then we can build
the following two-direction approach.

First, we solve the system from the forward direction, which means we find the optimal solution of the system
P1 : { f1, f2, . . . , fn, fn+1, . . . , fm} under the conditions:

• The partial noise weight of (e1, e2, . . . , em) is bounded by the partial noise-bound a;
• The noise weight of (e1, e2, . . . , em) is bounded by the noise-bound u.

This can be done by a modified ISBS algorithm in which the comparison of the partial noise-bound and the partial noise-
weight is added in Step 6 of Candidate, and Step 3 and Step 9 of Backtracking.

Then, we solve the system from the backward direction, which means we find the optimal solution of the system
P2 : { fn+1, fn+2, . . . , fm, f1, . . . , fn} under the conditions:

• The partial noise weight of (e1, e2, . . . , em) is bounded by the partial noise-bound b;
• The noise weight of (e1, e2, . . . , em) is bounded by the noise-bound u.

Finally, the better one of the solutions of the above two systems is the solution of the original Max-PoSSo problem.
Similarly as the original ISBS, for P1 or P2, we can generate the search tree TI S B S after the above solving processes ended.

Moreover, Tquasi is the tree generated when the noise-bound and the partial noise-bound are not used. Tnw is the tree
generated from a perfect binary tree by pruning the branches which don’t satisfy the constraints about the noise-bound and
the partial noise-bound. It is easy to see that when solving from the forward direction, we have |T̄nw | = ∑a

i=0
(n

i

)
<

∑u
i=0

(n
i

)
,

while when solving from the backward direction, we have |T̄nw | = ∑b
i=0

(n
i

)
<

∑u
i=0

(n
i

)
. Note that, for the original approach,

we have |T̄nw | = ∑u
i=0

(n
i

)
. It means that, by the two-direction approach, we convert the original Max-PoSSo problem into

two easier subproblems.
There are two natural questions about the two-direction approach:

i) Whether the total number of branches in the two search trees of the two directions is always less than the number of
branches in the search tree of the original approach.

ii) How to choose a and b such that the total number of branches in the two search trees of the two-direction approach is
minimal.

62 Z. Huang, D. Lin / Theoretical Computer Science 676 (2017) 52–68

In the following paragraphs of this subsection, we will show that these two questions can be perfectly answered when
the input systems { f1, f2, . . . , fm} satisfying the condition that |Im(Sn)| = |Im(S ′

n)| = 2n , where Sn is the map which maps
x ∈ Fn

2 to (f1(x), f2(x), . . . , fn(x)) ∈ Fn
2, and S ′

n is the map which maps x ∈ Fn
2 to (fn+1(x), fn+2(x), . . . , fm(x)) ∈ Fn

2.
When |Im(Sn)| = 2n , for P1, we have |T̄quasi | = 2n , thus T̄quasi is a perfect binary tree. Therefore, T̄quasi ∩ T̄nw = T̄nw , and

|T̄quasi ∩ T̄nw | = |T̄nw | = ∑a
i=0

(n
i

)
. Moreover, |T̄quasi| ≤ |Tquasi | ≤ 2n . Thus, for any leaf node N of |T̄quasi |, if it is the root

node of a subtree in Tquasi , then this subtree has a unique branch. Hence, for the nodes in Tquasi with depth bigger than n,
the pruning case (a) in Fig. 1 of Section 3 will not occur. This means |TI S B S | = |T̄I S B S | = |T̄quasi ∩ T̄nw | = |T̄nw | = ∑a

i=0
(n

i

)
.

Similarly, for P2, we have |TI S B S | = |T̄nw | = ∑b
i=0

(n
i

)
.

Proposition 6. Let a, b, u, n be non-negative integers, such that u ≤ n/2 and a + b = u − 1. Then we have:

u∑

i=0

(
n
i

)
>

a∑

i=0

(
n
i

)
+

b∑

i=0

(
n
i

)
≥

⌊ a+b
2 ⌋∑

i=0

(
n
i

)
+

⌈ a+b
2 ⌉∑

i=0

(
n
i

)
.

Proof. Without loss of generality, we can assume a ≤ b. First we prove
u∑

i=0

(n
i

)
>

a∑

i=0

(n
i

)
+

b∑

i=0

(n
i

)
. It is equivalent to prove

u∑

i=a+1

(n
i

)
>

b∑

i=0

(n
i

)
. Note that the numbers of terms in two sides of the inequality are both b + 1. Moreover, since n/2 ≥ u ≥

a + 1 > 0, we have
(n

a+1

)
>

(n
0

)
,
(n

a+2

)
>

(n
1

)
,
(n

u

)
>

(n
b

)
. By summing up all these inequalities, we have

u∑

i=a+1

(n
i

)
>

b∑

i=0

(n
i

)
.

Now we prove the second inequality. Obviously, when a = ⌊ a+b
2 ⌋, which means that either u is odd and a = b or u is even

and a = b −1, the equality holds. Without loss of generality, we can assume a < ⌊ a+b
2 ⌋, which implies a < ⌊ a+b

2 ⌋ ≤ ⌈ a+b
2 ⌉ < b.

Then it is sufficient to show that
(

n
a + 1

)
+

(
n

a + 2

)
+ · · · +

(
n

⌊ a+b
2 ⌋

)
<

(
n

⌈ a+b
2 ⌉ + 1

)
+

(
n

⌈ a+b
2 ⌉ + 2

)
+ · · · +

(
n
b

)
.

Since n/2 ≥ u ≥ b, we have the numbers of terms in both sides of the above inequality are same, and
(n

a+1

)
<(n

⌈ a+b
2 ⌉+1

)
,
(n

a+2

)
<

(n
⌈ a+b

2 ⌉+2

)
, . . . ,

(n
⌊ a+b

2 ⌋
)
<

(n
b

)
. Therefore, we can deduce the conclusion by summing up all these inequal-

ities. ✷

Given a noise-bound u ≤ n/2.2 Proposition 6 shows that if |Im(Sn)| = |Im(S ′
n)| = 2n , the branches we need to solve in

the two-direction approach is strictly less than those in the original approach. Moreover, we can conclude that the optimal
strategy of the two-direction approach is using the partial noise-bound ⌊ a+b

2 ⌋ for one system and ⌈ a+b
2 ⌉ for another system.

It is easy to see that when n is big, the number of branches solved in the optimal two-direction approach is much less
than that in the original approach. For example, let n = 128, u = 10. If |Im(Sn)| = |Im(S ′

n)| = 2n , for the original approach,
we need to solve

∑10
i=0

(128
i

)
≈ 247.8 branches. For the optimal two-direction approach, we need to solve

∑4
i=0

(128
i

)
+

∑5
i=0

(128
i

)
≈ 228.1 branches. Obviously, this is a significant improvement.

By combining the two-direction approach and ISBSb , we propose an improved algorithm called ISBS2, whose mainly
steps are as follows.

1. Given an input system P : { f1, . . . , fn, fn+1, . . . , f2n}.
2. Generate two systems P1 : { f1, . . . , fn, fn+1, . . . , f2n} and P2 : { fn+1, . . . , f2n, f1, . . . , fn}.
3. Set a total noise-bound u.
4. Set the partial noise-bound of P1 to be ⌊ u−1

2 ⌋ and the partial noise-bound of P2 to be ⌈ u−1
2 ⌉.

5. For i from 1 to 2, solve Pi with ISBS method under noise-bound u and its partial noise-bound.
• If for some Pi , we achieve a solution x, set x0 to be x and u to be w(x) − 1, where w(x) is the noise weight of the

noise vector corresponding to x. If i = 1, update the partial noise-bounds of P2.
6. If x0 is not empty, then it is the solution of the Max-PoSSo problem. Otherwise, increase u by a step size, and repeat

Step 4–5.

For the practical Max-PoSSo problems, the condition |Im(Sn)| = |Im(S ′
n)| = 2n may not hold, and theoretically finding

the optimal values of a and b is too hard. From the experiments, we verified that respectively setting a, b to be ⌊ u−1
2 ⌋ and

⌈ u−1
2 ⌉ is still a good strategy, by which the timing results are much better than those of other strategies.

2 For practical Max-PoSSo problems, u ≤ n/2 always holds.

Z. Huang, D. Lin / Theoretical Computer Science 676 (2017) 52–68 63

4.2. The optimal division strategy

In the above two-direction approach, we divide the input system P with 2n elements into two sub-systems P1 and P2
with n elements, and then respectively solve {P1, P2} and {P2, P1}. A natural question is that if we divide the input system
into one system with n − k elements and another system with n + k elements, whether the number of the total branches
will be less. Hence, in this subsection, we will discuss this question.

For convenience, in this subsection, when we say a k-partial noise-bound, we mean the noise-bound about the noise
vector (e1, e2, . . . , ek). Then, the above division strategy is:

(A) Given a noise-bound u, we find the optimal solution from P1 = { f1, f2, . . . , fn−k, fn−k+1, . . . , f2n} under an (n −
k)-partial noise-bound a and P2 = { fn−k+1, fn−k+2, . . . , f2n, f1, f2, . . . , fn−k} under an (n + k)-partial noise-bound b,
where a + b = u − 1.

The division strategy proposed in last subsection is:

(B) Given a noise-bound u, we find the optimal solution from P1 = { f1, f2, . . . , fn, fn+1, . . . , f2n} under an n-partial noise-
bound a and P3 = { fn+1, fn+2, . . . , f2n, f1, f2, . . . , fn} under an n-partial noise-bound b, where a + b = u − 1.

In the following we will prove that the number of branches solved in Strategy B is always smaller than that in Strategy A,
when k > 0, and |Im(Sn)| = 2n for P1, P2 and P3.

Firstly, let’s consider the forward direction. We will show that the number of branches in the search tree of Strategy B is
less than that of Strategy A. For P1, since |Im(Sn)| = 2n , as shown in last subsection, we can deduce that |TI S B S | = |T̄I S B S | =
|T̄quasi ∩ T̄nw | = |T̄nw | for Strategy A, where TI S B S , Tquasi, Tnw are defined as before. Note that, Tnw is generated from a
perfect tree by pruning the branches which don’t satisfy the noise-bound and the partial noise-bound. Hence, |T̄nw | =∑a

i=0
(n−k

i

)∑u−i
j=0

(k
j

)
. We have the following inequality about this value.

Lemma 7.
∑a

i=0
(n−k

i

)∑u−i
j=0

(k
j

)
≥ ∑a

i=0
(n

i

)
.

Proof. By Vandermonde’s identity, we have
(n

a

)
=

(n−k
a

)(k
0

)
+

(n−k
a−1

)(k
1

)
+ · · · +

(n−k
0

)(k
a

)

(n
a−1

)
=

(n−k
a−1

)(k
0

)
+

(n−k
a−2

)(k
1

)
+ · · · +

(n−k
0

)(k
a−1

)

...(n
0

)
=

(n−k
0

)(k
0

)
.

Since u − i + i = u ≥ a, the terms in the right of the above equalities are all in
∑a

i=0
(n−k

i

)∑u−i
j=0

(k
j

)
, and these terms are

distinct. Thus, the inequality is valid. ✷

Note that, for P1 in Strategy B, we have |TI S B S | = |T̄nw | = ∑a
i=0

(n
i

)
. It proves the above conclusion about the forward

direction.
Secondly, let’s consider the backward direction. That is we solve P2 by Strategy A, and P3 by Strategy B. Similarly as

above, we only need to compare the value of |Tnw |. For Tnw of P2 in Strategy A, the only constraint that the paths with
depth n should satisfy is e1 + e2 +· · ·+ en ≤ b. Hence |T̄nw | = ∑b

i=0
(n

i

)
. Obviously, for Tnw of P3 in Strategy B, we also have

|T̄nw | = ∑b
i=0

(n
i

)
. This implies that the number of branches in the search trees of these two strategies are the same.

By combining the conclusions of the two directions, we can conclude that Strategy B is always the optimal strategy when
the assumption |Im(Sn)| = 2n is valid.

4.3. The case m = sn

In this section, we extend the idea of the two-direction approach to the problems with s > 2, and present the s-direction
approach. Similarly as Lemma 5, we have the following lemma.

Lemma 8. Let u1, u2, . . . , us, u be s +1 non-negative integers, and u1 +u2 +· · ·+us ≤ u. For any non-negative integers a1, a2, . . . , as,
such that a1 + a2 + · · · + as = u − s + 1, at least one of the following inequalities hold: u1 ≤ a1 , u2 ≤ a2 ,. . ., us ≤ as.

This lemma shows the following fact. We can divide a noise vector E = (e1, . . . , em) into s parts

E1 = (e1, . . . , en), E2 = (en+1, . . . , e2n), . . . , Es = (e(s−1)n+1, . . . , esn)

64 Z. Huang, D. Lin / Theoretical Computer Science 676 (2017) 52–68

If E has a noise-bound u, then Ei has a noise-bound ai , where
∑s

i=1 ai = u − 1. Thus, we can build the following s-direction
approach. That is we generate s polynomial systems:

P1 : { f1, . . . , fn, fn+1, , . . . , f2n, . . . , f(s−1)n+1, . . . , f sn}
P2 : { fn+1, . . . , f2n, f1, . . . , fn, f2n+1, f2n+1, . . . , f3n, . . . , f(s−1)n+1, . . . , f sn}
· · · (1)

Ps : { f(s−1)n+1, . . . , f sn, f1, . . . , fn, fn+1, . . . , f2n, . . . , f(s−2)n+1, . . . , f(s−1)n}.
Then, solve each Pi under the partial noise-bound ai and the total noise-bound u.
Similarly as the case of m = 2n, when |Im(Sn)| = 2n for each Pi , we can derive the best strategy of setting the values of

these ai from the following proposition.

Proposition 9. Let u, n be two non-negative integers with n/2 ≥ u. s ≥ 2 is an integer. Suppose u − s + 1 ≡ r mod s, and p =
(u − s + 1 − r)/s. a1, a2, . . . , as are s non-negative integers, s.t. a1 + a2 + · · · + as = u − s + 1. We have

u∑

i=0

(
n
i

)
>

s∑

j=1

a j∑

i=0

(
n
i

)
(2)

s∑

j=1

a j∑

i=0

(
n
i

)
≥

s−r∑

j=1

p∑

i=0

(
n
i

)
+

r∑

j=1

p+1∑

i=0

(
n
i

)
. (3)

Proof. First, let’s prove inequality (2). Since u + 1 = (a1 + 1) + (a2 + 1) + · · ·+ (as + 1), we can divide
∑u

i=0
(n

i

)
into s parts:

(
n
0

)
+ . . . +

(
n
a1

)
,

(
n

a1 + 1

)
+ . . . +

(
n

a1 + a2 + 1

)
, . . . ,

(
n

u − as

)
+ . . . +

(
n
u

)
.

Note that the j-th part is the sum of a j + 1 elements. In the following, when we say a left-part, we mean one of these
parts. We can write

∑s
j=0

∑a j
i=0

(n
i

)
as the sum of s parts

∑a1
i=0

(n
i

)
, . . . ,

∑as
i=0

(n
i

)
. In the following, when we say a right-part,

we mean one of such parts. Obviously the first left-part
∑a1

i=0

(n
i

)
is equal to the first right-part. For the j-th left-part with

j > 1, since n/2 ≥ u, we can check that each element in this left-part is bigger than the corresponding element in the j-th
right-part. Hence the j-th left-part is bigger than the j-th right-part. Since s ≥ 2, we at least have two parts. Thus, we can
derive the first inequality.

Now, let’s prove inequality (3). Without loss of generality, we can assume a1 ≤ a2 ≤ · · · ≤ as . Note that a1 +a2 +· · ·+as =
u − s + 1 = (s − r)p + r(p + 1). Suppose among these ai , there are s1 elements being smaller than p, b elements being equal
to p, c elements being equal to p + 1 and s2 elements being bigger than p + 1. Then a1, a2, . . . , as can be written as

a1,a2, . . . ,as1 , p, p, . . . , p︸ ︷︷ ︸
b

, p + 1, p + 1, . . . , p + 1︸ ︷︷ ︸
c

,as−s2+1,as−s2+2, . . . ,as,

where s1 + b + c + s2 = s.
Now we consider the following three cases:

1. s1 + b = s − r and c + s2 = r. In this case, the left side of (3) minus the right side of (3) is equal to

s2∑

j=1

as−s2+ j∑

i=p+2

(
n
i

)
−

s1∑

j=1

p∑

i=a j+1

(
n
i

)
(4)

The first part of (4) has T1 = as−s2+1 + as−s2+2 + · · · + as − s2(p + 1) terms. The second part of (4) has T2 = s1 p − (a1 +
a2 +· · ·+as1) terms. T1 − T2 = (u − s + 1) −bp − c(p + 1) − s1 p − s2(p + 1) = (u − s + 1) − (s − r)p − r(p + 1) = 0, which
means the first and second parts of (4) have the same number of terms. Moreover, as−s2+ j ≥ p + 2 > p ≥ ai + 1, which
means every term in the left part of (4) is bigger than that in the right part of (4). Then we have (4) is not smaller than
0, which implies that the second inequality of (3) is valid, and the equality holds when b = s − r and c = r.

2. s1 + b > s − r and c + s2 < r. In this case, the left side of (3) minus the right side of (3) is equal to

s2∑

j=1

as−s2+ j∑

i=p+2

(
n
i

)
−

(b+s1−s+r∑

j=1

(
n

p + 1

)
+

s1∑

j=1

p∑

i=a j+1

(
n
i

))

(5)

Similarly as case 1, the first and second parts of (5) have the same number of terms, and every term in the left is bigger
than that in the right, which implies the correctness of the second inequality of (3).

Z. Huang, D. Lin / Theoretical Computer Science 676 (2017) 52–68 65

3. s1 + b < s − r and c + s2 > r. In this case, the left side of (3) minus the right side of (3) is equal to
(s2∑

j=1

as−s2+ j∑

i=p+2

(
n
i

)
+

c+s2−r∑

j=1

(
n

p + 1

))

−
s1∑

j=1

p∑

i=a j+1

(
n
i

)
(6)

Similarly as the above cases, the first and second parts of (6) have the same number of terms, and every term in the
left is bigger than that in the right, which implies the correctness of the second inequality of (3).

In summary, inequality (2) is valid in any cases. ✷

This proposition shows that when |Im(Sn)| = 2n for all these Pi , the number of branches solved in the s-direction
approach is always less than that in the original approach, and the best strategy is setting the partial noise-bounds of s − r
systems to be p and those of the rest r systems to be p + 1.

Based on the above theoretical results, similarly as algorithm ISBS2, we can implement an algorithm by using the
s-direction approach. The main steps of the algorithm are as follows:

1. Given an input system P : { f1, . . . , fn, fn+1, . . . , f2n, . . . , f(s−1)n+1, . . . , f sn}.
2. Generate s systems P1, P2, . . . , Ps as (1).
3. Set a noise-bound u. Suppose u − s + 1 ≡ r mod s, and let p = (u − s + 1 − r)/s.
4. For P1, . . . , Ps−r , set their partial noise-bounds to be p. For Ps−r+1, . . . , Ps , set their partial noise-bounds to be p + 1.
5. For i from 1 to s, solve Pi with the ISBS method under noise-bound u and its partial noise-bound.

• If for some Pk , we achieve a solution x, then set x0 to be x and u to be w(x) − 1, where w(x) is the noise weight
of the noise vector corresponding to x. Update the partial noise-bounds of Pk+1, Pk+2, . . . , Ps by the strategy used in
Step 4.

6. If x0 is not empty, then it is the solution of the Max-PoSSo problem. Otherwise, increase u by a step size, and repeat
Step 4–5.

Remark 3. Based on the above results about |TI S B S |, we can deduce some complexity bounds of ISBS. First, suppose the
complexity of solving one branch of TI S B S is C . Then, for the original version of ISBS, we have |TI S B S | ≤ |Tquasi | ≤ 2n , hence
its complexity is bounded by C · 2n . To the best of the author’s knowledge, the best worst-case complexity of incrementally
solving a polynomial system with n variables and m polynomials is O (m2n), thus the complexity of the original ISBS is
bounded by O (m22n). For ISBSb , u, the noise-bound of the optimal solution, can be approached by the artificial noise-bound,
hence we have |TI S B S | = |Tquasi ∩Tnw | ≤ min(2n,

∑u
i=0

(m
i

)
). In most times, 2n ≥ ∑u

i=0
(m

i

)
, hence the worst-case complexity

of ISBSb is O (m
∑u

i=0
(m

i

)
2n) = O (mu+12n). For the s-direction version of ISBS, the partial noise-bound is nearly u/s, where

u is the noise weight of the optimal solution and s = m/n, hence |TI S B S | ≈ s
∑u/s

i=1

(n
i

)
, and the worst-case complexity of

ISBS is O (snu/s2n). These complexity bounds show that ISBS is a single exponential algorithm. In practical computation,
for some polynomial systems, the complexity of solving one branch of TI S B S is much lower than O (m2n) and sometime is
polynomial, then the practical complexity of ISBS can be much lower.

5. Experimental results

In order to test the proposed improvements, we generated some benchmarks from the Cold Boot key recovery problem
of Serpent. The Cold Boot key recovery problem is originated from the Cold Boot attack, which was first proposed and
discussed in the seminal work of [9]. The Cold Boot attack relies on the data remanence property of DRAM to retrieve
memory contents after power off. In the Cold Boot attack to a block cipher, the attacker is able to retrieve the round keys,
but some bits of the round keys is flipped since the decay of the memory data. Thus, the Cold Boot key recovery problem
for a block cipher is to recover the initial key for these decayed round keys.

In [1], Cid and Albrecht proposed a mathematical model, by which one can convert Cold Boot key recovery problems
into Partial Weighted Max-PoSSo problems, then they solved some Cold Boot key recovery problems of AES and Serpent by
mixed integer programming solver SCIP. In [11], the same problems were solved by the original ISBS algorithm and some
better experimental results were presented.

Note that in this paper we focus on solving the Max-PoSSo problem, hence in our experiments, unlike the general Cold
Boot key recovery model, we assume that the bit decay in DRAM is symmetric: bit flips 0 → 1 and 1 → 0 occur with same
probabilities δ. Under this assumption, the Cold Boot key recovery problem of a block cipher can be described as follows.

Let KS : Fn
2 → FN

2 be the key schedule function of a block cipher, where N > n. Let GK be an equation system cor-
responding to KS such that the only pairs (k, K) that satisfy GK are any initial key k ∈ Fn

2 and round key K = KS(k).
Moreover, each gi ∈ GK has the form hi + Ki where hi is some polynomial and Ki is the i-th bit of K . Let K ′ be the decayed
round keys, and set f i = hi + K ′

i for any 1 ≤ i ≤ N . Then, P = { f1, f2, . . . , f N} is the input of the Max-PoSSo problem we
need to solve.

66 Z. Huang, D. Lin / Theoretical Computer Science 676 (2017) 52–68

Table 1
Serpent considering 32 · N bits of key schedule output (symmetric noise).

δ0 = δ1 Method N Limit t r min t avg. t max t

0.01 ISBS2 8 3600.0 s 100% 0.60 s 2.46 s 30.62 s
ISBS0 8 3600.0 s 100% 0.78 s 9.87 s 138.19 s
SCIP 12 3600.0 s 96% 4.60 s 256.46 s –

0.02 ISBS2 8 3600.0 s 96(99)% 0.82 s 55.67 s 996.65 s
ISBS0 8 3600.0 s 96(99)% 0.80 s 163.56 s 2001.59 s
SCIP 12 3600.0 s 79% 8.20 s 1139.72 s –

0.03 ISBS2 8 3600.0 s 91(95)% 0.58 s 171.17 s 2138.77 s
ISBS0 8 3600.0 s 90(92)% 1.74 s 314.78 s 3463.00 s
SCIP 12 7200.0 s 53% 24.57 s 4205.34 s –

0.05 ISBS2 8 3600.0 s 40(98)% 3.67 s 382.61 s 1916.91 s
ISBS0 8 3600.0 s 38(94)% 12.37 s 745.80 s 2993.81 s
SCIP 12 3600.0 s 18% 5.84 s 1921.89 s –

In [1] and [11], benchmarks with symmetric noise generated from the 128-bit version of Serpent were tested, and in
the experiments of this paper, we solved the same benchmarks. Since we use 256-bit round keys which means m = 2n, the
improved ISBS algorithm which was implemented and tested in our experiments is ISBS2, and in our implementation the
polynomial system solving process is executed by running the Characteristic Set algorithm MFCS proposed in [7]. We com-
pared the experimental results of ISBS2 with those of ISBS0 and SCIP. Here, ISBS0 denotes the ISBS algorithm implemented
and tested in [11], and SCIP denotes the mixed integer programming method used in [1].

Our experimental platform is a PC with i7 2.8 Ghz CPU (only one core is used), and 4 GB Memory, which is same as the
one used in [11]. In our experiments, for each δ we generated 100 instances with random initial keys and random noises.
As in [1,11], we interrupted the solver when the running time exceeded the time limit 3600 seconds.

In Table 1, the column “r” gives the success rate, which is the percentage of the instances we recovered the correct initial
key, while the values in the brackets are the percentage of the instances we achieved the optimal solution within the time
limit. Note that, there are two cases in which we cannot recover the correct initial key.

(1) The solver was interrupted after the time limit.
(2) The solution achieved from the Max-PoSSo problem is not the true solution.

The column “avg. time” gives the average running time of the instances which are solved within the time limit, and the
column “max t” gives the maximal running time for the instances which are solved within the time limit.

From the experimental results, we can see that when δ = 0.01, ISBS2 is about 4 times faster than ISBS0. When δ =
0.02, 0.03, 0.05, ISBS2 is about 2 times faster than ISBS0. When δ = 0.05, as in [11], we interrupted the solver after we have
searched all the possible noise vectors under the noise-bound 12, thus although 98 instances ended within the time limit,
only 40 of them returned the true solutions. In summary, these experimental results show that with our modification we
significantly improve the efficiency of ISBS.

Remark 4. The above experimental results imply that ISBS can be an efficient algorithm when the error rate δ is small. On
our experimental platform, we can solve the above Serpent problems with δ = 0.08 by ISBS2 in about 6 hours. It seems that
problems with higher error rate cannot be solved in reasonable time by our method.

6. Conclusions

In this paper, we revisit the Max-PoSSo problem and the ISBS method. For the basic of Max-PoSSo, we show some
results about the behavior of the success rate of recovering the true solution. For ISBS, we present some theoretical results
about the number of branches in the search tree, and propose some ways to decrease the number of branches for general
polynomial systems and overdetermined polynomial systems. We implement a new algorithm based on these improvements
and test it by solving the Cold Boot Key recovery problem of Serpent with symmetric noise. The experimental results
demonstrate that compared with the ISBS algorithm implemented in [11], the new algorithm is about 2–4 times faster for
different benchmarks.

There is an idea of further improving ISBS which can be applied in the future. In the improved algorithm, when the
artificial noise-bound increases gradually, there are some repeated computations which can be avoided. We know that
Tquasi doesn’t change after the noise-bound increased. It means that after we increase the artificial noise-bound we only
need to continue searching the paths in Tquasi which are pruned because of the former noise-bound. Therefore, if we can
store the information of all these paths efficiently, a lot of repeated computations can be avoided.

Z. Huang, D. Lin / Theoretical Computer Science 676 (2017) 52–68 67

Acknowledgements

This work was in part supported by the National Key Basic Research Program of China under Grant No. 2013CB834203,
the National Key Research and Development Plan of China under Grant No. 2016YFB0200504, and the National Natural
Science Foundation of China under Grant No. 61502485.

Appendix A. The strict proof of Proposition 2

In the following, we assume 1/r is an integer. First, we need the following two lemmas by which we can present the
binomial cumulative function by the incomplete beta function. The two lemmas can be easily proved by integration by parts.

Lemma 10. [10] Let n, c be positive integer, and 0 ≤ p ≤ 1 is a real number. We have

c∑

k=0

(
n
k

)
pk(1 − p)n−k =

∫ 1−p
0 tn−c−1(1 − t)2dt

B(n − c, c + 1)
,

where B(a, b) is the Beta function.

Lemma 11. [10] Let Ix(a, b) =
∫ x

0 ta−1(1−t)b−1dt
B(a,b) . This Ix(a, b) is called the incomplete beta function. Then, we have

(1) Ix(a,b) = 1 − I1−x(b,a)

(2) Ix(a + 1, b) = Ix(a, b) − xa(1 − x)b

aB(a,b)
.

Proof of Proposition 2.

a∑

i=0

(

(
n − k

i

) a+b−i∑

j=0

(
k
j

)
) +

b∑

i=0

(
n
i

)
≥

a∑

i=0

(
n
i

)
+

b∑

i=0

(
n
i

)
.

Let k = mr, and s = 1/r be an integer. From the above two lemmas, we have f (k) =
∑k

i=0
(m

i

)

2m = I1/2(k(s − 1), k + 1). Then,
the conclusion is equivalent to f (k + t) ≤ f (k) for any k, t ∈ N . Thus, it is sufficient to prove f (k + 1) ≤ f (k), ∀k ∈ N .

Note that by Lemma 11, we have

f (k + 1) = I1/2((k + 1)(s − 1),k + 2) = 1 − I1/2(k + 2, (k + 1)(s − 1))

= 1 − I1/2(k + 1, (k + 1)(s − 1)) + 1
2(k+1)s(k + 1)B(k + 1, (k + 1)(s − 1))

= I1/2((k + 1)(s − 1),k + 1) + 1
2(k+1)s(k + 1)B(k + 1, (k + 1)(s − 1))

.

For simplicity, we set a = (k + 1)(s − 1), b = k + 1. By applying (2) of Lemma 11 s − 1 times, we have

I1/2(a,b) = I1/2(a − (s − 1),b) −
s−1∑

i=1

1
2a+b−i(a − i)B(a − i,b)

.

Note that I1/2(a − (s − 1), b) = I1/2(k(s − 1), k + 1) = f (k). Thus,

f (k + 1) − f (k) = 1
2a+bbB(b,a)

−
s−1∑

i=1

1
2a+b−i(a − i)B(a − i,b)

. (7)

Since 1 ≤ i ≤ s, we have

1
(a − i)B(a − i,b)

= 1
(a + b − i)B(a − i + 1,b)

= a − i + 1
(a + b − i)(a + b − i + 1)B(a − i + 2,b)

= · · · = (a − i + 1)(a − i + 2) · · · (a − 1)

(a + b − i)(a + b − i + 1) · · · (a + b − 1)B(a,b)

≥ (a − s + 1)i−1

(a + b − 1)i B(a,b)
.

68 Z. Huang, D. Lin / Theoretical Computer Science 676 (2017) 52–68

Table 2
Incrementally solving the serpent problems by different methods.

Characteristic set Gröbner basis Cryptominisat

0.67 s 3.47 s 33.59 s

Therefore, by applying the above inequality to (7), we have

f (k + 1) − f (k) ≤ 1
2a+bbB(b,a)

− 1
2a+b(a − s + 1)B(a,b)

s−1∑

i=1

(
2(a − s + 1)

a + b − 1
)i .

Let q = 2(a−s+1)
a+b−1 , then f (k + 1) − f (k) = 1

2a+b B(b,a)
(1

b − 2
a+b−1 (1−qs−1

1−q)).

Now, it is sufficient to show 1
b − 2

a+b−1 (1−qs−1

1−q) ≤ 0. If s = 2, the conclusion is correct obviously. Now we consider the case

s ≥ 3. In this case, q − 1 = 2(a−s+1)
a+b−1 = (k−1)(s−2)−1

a+b−1 > 0. Thus, 1−qs−1

1−q = 1 + q + · · · + qs−2 > s − 1. Then 1
b − 2

a+b−1 (1−qs−1

1−q) <
1

k+1 − 2(s−1)
(k+1)s−1 < 1

k+1 − 2(s−1)
(k+1)s < 2−s

(k+1)s < 0. ✷

Appendix B. The incremental solving process

In this part, we investigate the efficiency of the method used in the incremental solving process. Here, we consider three
methods, which are the Characteristic set method, the Gröbner basis method, and the SAT-solver. We test these methods by
incrementally solving the polynomial systems generated from the Cold boot key recovery problems of Serpent in Section 5.
The input polynomial system has 128 variables, and 256 polynomials. In the experiments, for the Characteristic Set method,
we used our implementation of MFCS as Section 5. For the Gröbner Basis method, we used the Boolean Gröbner Basis
function in Magma (Version 2.20) under graded reverse lexicographical order. For the SAT-solver, we used the Cryptominisat
5.0.0, which is the most efficient SAT-solver for solving SAT problems converted from Boolean polynomial systems. Table 2
lists the average running times for solving 100 instances by these methods.

From the results, we can conclude that the Characteristic Set method is the most efficient one for incrementally solving
this kind of polynomial systems. We think the reason is as the following. In the incremental solving process, the SAT-solver
cannot represent and store the former results by an easy way, since at the beginning of incremental solving, a lot of points
can satisfy the first several polynomials. Then one cannot use the former results to reduce repeating computations. Thus,
the SAT-solver is not suitable for incremental solving. For the Gröbenr Basis method, although it can represent and store
the former results well, since the number of polynomials is small at the beginning of the incremental solving process, the
degree of regularity will be high and the fast Gaussian elimination techniques cannot be well used. Hence, its efficiency is
not high.

References

[1] M.R. Albrecht, C. Cid, Cold boot key recovery by solving polynomial systems with noise, in: ACNS, 2011, pp. 57–72.
[2] E. Biham, R. Anderson, L. Knudsen, Serpent: a new block cipher proposal, in: International Workshop on Fast Software Encryption, Springer, Berlin,

Heidelberg, 1998, pp. 222–238.
[3] A. Braeken, B. Preneel, Probabilistic algebraic attacks, in: Cryptography and Coding, Springer, Berlin, Heidelberg, 2005, pp. 290–303.
[4] F. Chai, X.S. Gao, C. Yuan, A characteristic set method for solving Boolean equations and applications in cryptanalysis of stream ciphers, J. Syst. Sci.

Complex. 21 (2) (2008) 191–208.
[5] J.C. Faugère, A new efficient algorithm for computing Gröbner bases (F4), J. Pure Appl. Algebra 139 (1–3) (1999) 61–88.
[6] J.C. Faugère, A new efficient algorithm for computing Gröner bases without reduction to zero (F5), in: Proc. ISSAC, 2002, pp. 75–83.
[7] X.S. Gao, Z. Huang, Characteristic set algorithms for equation solving in finite fields, J. Symbolic Comput. 47 (6) (2012) 655–679.
[8] J. Håstad, Satisfying degree-d equations over GF[2]n , in: APPROX-RANDOM, 2011, pp. 242–253.
[9] J.A. Halderman, S.D. Schoen, N. Heninger, W. Clarkson, W. Paul, J.A. Calandrino, A.J. Feldman, J. Appelbaum, E.W. Felten, Lest we remember: cold boot

attacks on encryption keys, in: USENIX Security Symposium, USENIX Association, 2009, pp. 45–60.
[10] H.O. Hartley, E.R. Fitch, A chart for the incomplete beta-function and the cumulative binomial distribution, Biometrika 38 (3/4) (1951) 423–426.
[11] Z. Huang, D. Lin, A new method for solving polynomial systems with noise over F2 and its applications in cold boot key recovery, in: Selected Areas

in Cryptography, Windsor, Canada, in: Lecture Notes in Comput. Sci., vol. 7707, 2013, pp. 16–33.
[12] D. Joan, V. Rijmen, The Design of Rijndael: AES-the Advanced Encryption Standard, Springer Science & Business Media, 2013.
[13] S.W. Zhao, X.S. Gao, Minimal achievable approximation ratio for MAX-MQ in finite fields, Theoret. Comput. Sci. 410 (21–23) (2009) 2285–2290.

